Article Abstract

Expansion of cardiac progenitors from reprogrammed fibroblasts as potential novel cardiovascular therapy

Authors: Nevin Witman, Makoto Sahara


The human heart has an unremitting and laborious job, to continuously provide all the organs in the body with oxygen and nutrients. An insult occurring to the muscular organ in the form of an ischemic injury, such as myocardial infarction (MI) reduces heart function by causing irreversible damage. Severe injuries to the heart can lead to heart failure (HF) and death. Unfortunately, the human heart has very little ability to repair itself upon injury, predominantly due to the inherent quiescent state of the adult cardiomyocytes (CMs), the major “power house” cell type of the heart. Currently, heart transplants remain one of the most successful therapeutic options for patients in end stage HF. However, even if the extensive recipient list could be met with matched available donors, complications arise in the form of graft dysfunction, immune rejection and infection. Therefore there is a pressing need to develop novel cardiac therapies.