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Introduction

Recent studies demonstrated that members of the Retinal 
Determination Gene Network (RDGN), a key gene 
network in organ development, have been shown to serve 
as co-regulators of transforming growth factors β (TGF-β) 
signaling thereby regulating cancer development (1,2). 
TGF-β signal transducers to modify TGF-β signal in 
tumor initiation and progression are well documented 
with various cancers (3). TGF-β and bone morphogenetic 
proteins (BMPs) are members of the TGF-β superfamily, 
which contains over 30 ligands that can be categorized 
into subgroups: Activin, Nodal, BMPs, growth and 
differentiation factors (GDFs), Anti-müllerian hormone 
(AMH) and TGF-βs (4). Studies in the past few decades 
have demonstrated that TGF-β not only plays an essential 
role in the control of cell proliferation, tissue differentiation 
and embryonic development but also influences stem cell 
behaviors (3). Other signaling components have been 

shown to interact with TGF-β (5). The interplay between 
RDGN with TGF-β/BMP signaling to influence epithelial-
mesenchymal transition (EMT) and cancer stem cell fate 
would be a tremendous opportunity for developing novel 
strategies for targeted therapies.

TGF-β/BMP signaling

TGF-β is a ubiquitous cytokine with profound effects 
on epithelial and other tissues, and also well known for 
its functions in the regulation of cell fate specification, 
compartment boundary establishment as well as cell 
proliferation and death (3). Two fundamental types of 
serine/threonine kinase transmembrane receptors are 
responsible for amplifying the signal of TGF-β superfamily 
ligands in human genome, type I and type II. For some 
ligands, additional co-receptors are necessary for optimal 
ligand binding to the type I-type II receptor complex. After 
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a constitutive activation of the receptor complex, the type 
II receptor recruits and phosphorylates the type I receptor 
on several serines and threonines, which in the context 
provide a binding site for the downstream substrates, 
the receptor-regulator SMADs (R-SMADs) (6). SMAD 
members could shuttle between the cytoplasm and nucleus. 
Upon phosphorylation, the R-SMADs complex accumulates 
in the nucleus, then associated with other transcription 
factors such as FAST1 and FAST2, which recruit SMADs 
complex to specific DNA sequences (7). Regulation of 
SMADs complex occurs at a number of different levels, 
either positively through abundance of coactivators of the 
p300/CREB-binding protein class (8), or negatively by 
recruiting the Sno/Ski family (9,10). During carcinogenesis, 

the normal hierarchical organization of the biological 
microenvironment breaks down, at least in a significant part, 
owing to misexpression in TGF-β/Smads family (Figure 1).

Similar to TGF-β pathway, the BMP signaling cascade is 
composed of two types of receptor serine/threonine protein 
kinases known as type I and type II receptors, and transcription 
factors belonging to the SMAD family which transduce the 
BMP signal to the nucleus (5). Specifically, binding of BMP 
ligands to the type II receptor leads to phosphorylation of the 
type I receptor, which in turn activates the BMP R-Smads, 
Smads 1/5/8. Phosphorylated R-SMADs form heterodimers 
with SMAD4 (a common co-SMAD for the BMP as well 
as the TGF-β signaling pathway), and translocate into 
the nucleus, in which they regulate transcription of the 

： ：

Figure 1 Integration of RDGN with TGF-β to regulate EMT. Upon ligand binding, TGF-β receptor type I/II (TGFβRI/II) are sequentially 
phosphorylated, leading to further phosphorylation of smad2/3. Then phosphorylated smad2/3 recruits smad4. The complex translocates into the 
nucleus to transcriptionally activate mesenchymal genes Snail/Slug, Zeb1, etc., and represses epithelial genes E-cadherin and cytokeratin, leading 
to the EMT phenotype. DACH1 is reported to repress TGFβRI/II expression, and associates with smad2/3/4 to recruit transcriptional repressors 
NCoR/mSin to block Smad activation. DACH1 could also recruit transcription repressors to AP-1 protein to indirectly inhibit TGF- activation. 
In opposite, SIX/EYA complex up-regulates the expressions of TGFβRI/II and smad3, and down-regulates smad7, enhancing the activation of 
TGF-β. RDGN, Retinal Determination Gene Network; TGF-β, transforming growth factors β; EMT, epithelial-mesenchymal transition.
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BMP downstream target genes. In contrast to the Smad-
dependent canonical pathway, the emerging evidence points 
to a role for SMAD independent fashion via TAK1, MKK3 
and p38 MAPK in BMP signaling (11).

Indeed, TGF-β pathway displays a dual role in cancer 
development, acting as a tumor suppressor in early lesions 
but enhancing successful metastasis in the subset of 
advanced tumors (12,13). TGF-β induces EMT majorly 
through transcriptional activation of mesenchymal genes, 
such as Snail/Slug, Zeb1, Twist, and repression of epithelial 
genes, like E-cadherin and cytokeratin (14) (Figure 1). 
Post-transcriptional regulation by TGF-β also mediated 
EMT process, such as translation of Snail and splicing of 
epithelial splicing regulatory protein 1 (ESRP) (15). The 
reprogramming of oncogenic gene expression during EMT 
progression could be induced and controlled by TGF-β 
signaling pathway (16). Because TGF-β signaling is critical 
for EMT during morphogenesis, and cancer cells with EMT 
acquire enhanced migration and invasion in a tumorigenic 
context (17), it is likely that the ability of TGF-β to promote 
metastasis is at least in part due to its ability to induce an 
EMT. Interestingly, mesenchymal stromal cells secrete 
TGF-β to drive EMT of cancer cell (18). On the other hand, 
cancer-associated fibroblasts activate TGF-β signaling to 
maintain stemness phenotype of cancer cell (19).

RDGN signal network

The RDGN, which functions as an administrator in 
drosophila eye specification, has been proved to play key 
roles in the formation of many different organs as well 
as tumorigenesis. This regulatory framework is mainly 
consisted of dachshund (dac/Dach), eyes absent (eya/Eya) and 
sin oculis (so/Six) etc. (20,21). As a crucial member of RDGN 
network, the dac gene was initially cloned as a dominant 
inhibitor of ellipse in drosophila, whereas the DACH1 may 
serve as a novel tumor suppressor though its inhibition on 
malignant proliferation as well as migration and invasion 
in cultured cells (22,23). Several lines of evidence suggest 
that DACH1 regulates expression of target genes either 
through interacting with DNA-binding transcription 
factors (c-Jun, Smads, Six, and ER) (1,23-25) or direct 
association with chromatin DNA (26,27). For example, 
DACH1 combines with AP-1 family to inhibit breast and 
renal cancer cell proliferation (28,29). DACH1 attenuates 
oncogenic FoxC1 by competition for forkhead binding sites 
(26). Recent studies highlight the significance of DACH1 
in the regulation of the tumor microenvironment. Not only 

transcriptionally suppresses the interleukin (IL) -8, DACH1 
is but also shown to be an endogenous inhibitor of CXCL 
signaling to restraint cytokine abundance during cell growth 
and migration (30-32).

Members of Six family, a mammalian homolog of the 
Drosophila sine oculis gene, belong to the homebox genes 
and are conserved during the evolution of species (33). 
Traditionally, Six coordinates with Eya as an active complex in 
tissue specification like eye, kidney and muscle (25). Disruption 
of the SIX-EYA complex gives rise to the branchiootorenal 
(BOR) syndrome in human, an autosomal dominant genetic 
disorder involving kidneys, ears and neck (34). During the early 
stage, Six1 promotes the progenitor cell proliferation and 
survival through activation or repression of a diverse range 
of downstream target genes. Once the organ development is 
completed, the expression of Six1 keeps low or undetectable 
in adult tissue maintenance (35). However, reactivations of 
SIX1 by unknown mechanism are reported in various types 
of cancer (36). Ectopic expression of Six1 could perturb the 
normal self-renewal system, which contributes to tumor 
onset and strongly correlates with tumor aggressiveness (37). 
Indeed, SIX1 accelerates the cell cycle process depending 
on either cyclin D1 or cyclin A1 abundance, and increases 
cell motility and invasiveness (38,39). On the other hand, 
knockdown of SIX1 in animal models would cause a drastic 
reduction in tumor size and metastasis, most of which relies 
on the inactivation of Wnt signaling (40). Thus, inhibition 
of SIX1 function would be therapeutically relevant in many 
different cancers.

A prominent role of mammalian eye absent (EYA) 
proteins is tantamount to drive cell-fate determination in a 
broad spectrum of cells and tissues (41). As a transcriptional 
co-activator to Six family, Eya is recruited in the context of 
local chromatin and release the suppressive status of Six to 
permit target gene expression (25). Besides, phosphatase 
activity is another instinct feature of Eya family. The 
evidences in the DNA damage as well as the innate immune 
response emphasize the importance of Eya phosphatase 
function in the dynamic processes of organization (42,43). 
Moreover, EYA2 dephosphorylates of residue in Y36 on 
estrogen receptor β (ERβ) to modify its the suppressive 
role in tumor development and dissemination (44). It is 
becoming increasingly clear that aberrant expression of 
EYA proteins can induce an oncogenic activity in breast 
and ovarian cancers (45-47). In particular, EYA2 is shown 
to promote proliferation, migration, and invasion of breast 
cancer cells. In this respect, a class of Eya phosphatase 
inhibitors identified by Dr. Ford’s group offers a therapeutic 
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opportunity by targeting Eya2 overexpression tumor (48).

Integration of TGF-β/BMP signaling with RDGNs 
in EMT regulation

The significance of RDGN in the interplay with TGF-β 
signaling pathways appears in parallel with an understanding 
of each key regulator’s biochemistry and its contribution to 
tumor process. This network can be approximately classified 
into two types depending on the final effecting in the 
signaling. The first class is defined as a repressor of TGF-β 
pathway. For example, dac combines with dpp to function as 
a tight regulatory loop, which is responsible for maintaining 
the correct formation of legs and eyes in Drosophila (49). 
During chicken developmental processes, Dach1 interacts 
with Smads to make a large repressor complex, illuminating 
its role as an intracellular modulator of BMP signaling (50). 
DACH1 degrades TGF-β induction of activator protein-1 
(AP-1) and represses SMAD signaling in gene reporter assays 
and endogenous TGF-β responsive genes by microarray 
analysis (1). Further molecular analysis shows the negative 
regulation of TGF-β by DACH1 requires the DACH1 
DS domain, since this structure recruits NCoR to bind 
SMAD4-binding site (1,51). Subsequent analysis identified 
that DACH1 shared structural homology to Ski/Sno pro-
oncogenes, both of which repress AP-1 and Smad signaling 
associate with TGF-β (52). In ovary cancer, high levels of 
DACH1 correlate with adverse tendency of expression in 
TGFβRII and Smad4, providing another evidence of mutual 
regulation (2). Meanwhile, overexpression of DACH1 allows a 
lower level of phosphorylated Smad2 in colorectal cancer cells 
as well as in gastric cancer, in which DACH1 in part perturbs 
TGF-β/Smad pathway induced EMT during tumorigenesis 
(51,53). Of note, the inverse relationship between DACH1 
and BMPs is also reported in other models (54,55), extending 
potential mechanism for the communication between 
DACH1 and TGF-β/BMP superfamily.

The second class of RDGNs is characterized by 
remarkable activation by Eya and Six in TGF-β signaling 
during metastases. Especially, as a chief member of Six 
family, Six1 participates in the regulation of TGF-β at 
multiple levels through diverse mechanisms. Evidence 
is mounting that Six1 expression has the potential to 
selectively promote the pro-metastatic activity of TGF-β 
while antagonizing its growth-inhibitory function, which 
is in conjunction with nuclear accumulation of Smad3. 
Inhibition of the TGF-β signaling could reverse element 
of Six1-induced EMT, which was interpreted as the hints 

that Six1-induced EMT requires TGF-β signal (56). 
Intriguingly, several lines of evidence indicate that Six1 
could be the crucial mediator in switching TGF-β signaling 
from suppressive performance to tumor promotional. 
Indeed, Six1 homeoprotein downstream targets are involved 
in TGF-β pathway, such as the up-regulation of TGFβRI 
and TGFβRII by Six1 significantly contributes to the 
activation of TGF-β signal (57,58). Although upregulation 
of TGFβRI in MCF7 cells is sufficient to induce TGF-β 
signaling and EMT, it is clear not sufficient to increase 
metastasis in a tumorigenic context (57), suggesting other 
underlying downstream targets coordinated with TGFβR to 
reinforce the activation induced by Six1. An elegant study 
from Anna et al. demonstrates a cluster of miRNA-106b-25 
upregulated by Six1 homeoprotein has physiologically 
relevant substrate of Smad7, recognized as a dominant 
inhibitor in Smad family, and also activate the TGF-β 
pathways, providing a novel mechanism in understanding 
the switch behavior of Six1 in TGF-β signaling from tumor 
suppressive to tumor promotional (59). Intriguingly, the 
Six1 mediated increasing of TGFβRI and Smad3 as well as 
the induced profiles of EMT and cancer stem cell can be 
reversed in the absence of Eya2, raising the possibility that 
Eya family is necessary for the pro-tumorigenic functions of 
Six1 to active TGF-β signaling (46).

Other mechanism involved in the regulation of 
EMT by RDGNs

To date, great endeavor has been applied to explore other 
molecular underpinnings of RDGN members in the 
regulation of EMT progress. Besides coordination with 
TGF-β superfamily, ectopic expression of DACH/EYA/
SIX genes could respond to other oncogenic signaling to 
maintain the disseminated tumor cells. As DACH1 can 
function as oppose inducer of EMT, loss of DACH1 in 
tumor would permit the development of a migratory, invasive 
cell state. By inactivation of the YB-1 mediated induction 
of Snail translation, recovery the expression of DACH1 
reduces the number of mammospheres, and even reverses the 
EMT in basal-like forms of breast cancer, a most aggressive  
subtype (60). Besides, DACH1 directly suppresses the 
transcriptional activity of SNAI1 to increase the expression 
of E-cadherin in breast cancer cell lines, limiting the ability 
to migration and invasion (61,62). Another mechanism of 
DACH1’s ability to repress EMT might come from the 
inactivation of Wnt/β-catenin signaling, since our group 
recently finds that β-catenin is a novel target of DACH1 
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and overexpression of DACH1 gives rise to phosphorylation 
of GSK3β (53). Besides, DACH1 is capable of reversing 
the H-Ras and c-Myc induced oncogenic phenotype and 
diminishes the magnificent proliferation of breast cancer (32).

Standing on the other side of RD genetic network is 
EYA/SIX. In breast and cervical cancer, SIX1 and VEGF-C 
consist of a prometastatic axis and function in peritumoral 
and intratumoral lymphangiogenesis, lymphatic invasion 
and distant metastasis during EMT development (63,64). 
Moreover, the subpopulation of cancer stem cell in mammary 
gland plays a critical role for driving Six1-mediated 
tumorigenesis, which in part relies on the activation on Wnt 
signaling (40). Six1 enhances a tumor initiating phenotype in 
part through MEK/ERK signaling, another crucial pathway in 
maintenance the proper stem cell properties (65). Additional 
mechanisms of SIX1 regulating EMT include repression of 
miR-200-family expression, resulting in posttranscriptional 
activation of ZEB1 to ignite carcinogenesis and promote 
EMT (66). Although the individual value of EYA family in 
EMT progress is currently unknown, the tight interaction 
of EYA-SIX as a transcriptional complex cannot rule out 
the possibilities that Eya participates in every step of EMT 
regulation induced by Six family.

Conclusions

The understanding of the molecular mechanism involved 
in tumor cell dissemination is the key to identify potential 
therapeutic targets to prevent or limit the extent of 
metastasis. As a critical mechanism of migration during 
development, EMT program could be hijacked in cancer 
cell by abnormal activation of developmental pathways, like 
TGF-β P signaling. The integration of TGF-β P pathway 
with the main members in RDGNs, DACH/EYA/SIX, 
would provide novel insight in the regulation of EMT. It is 
well known that cancer cells with EMT phenotypes acquire 
cancer stem cell properties and gain therapeutic resistance. 
If modification of RDGN-dependent TGF-β signaling 
can reverse the EMT phenotype is worthy further study. 
Reinstalling the normal hierarch of this signaling pathway 
by targeting DACH/EYA/SIX may offer us an opportunity 
to block oncogenic EMT process.
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