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Introduction

Osteoarthritis (OA) is the most common form of arthritis, 
and current prevalence is 12% in the population over  
60 years old, which will escalate over the next 20 years (1). 
Characteristic features of OA include chronic degeneration 
of articular cartilage, matrix fibrillation, erosion, sclerosis of 
subchondral bone and osteophyte formation (2). Although 
it is widely accepted that OA is a degenerative condition 
of the cartilage, both subchondral bone and synovial 
membrane also actively participate in the progression of 
the disease (3). One of typical symptoms of KOA is pain, 
which can progress to be continuous, and exert a significant 
detrimental effect on the movement and quality of life (1).  
Currently available options for the treatment of KOA 
include physical and occupational therapy, weight loss, 
administration of nonsteroidal anti-inflammatory drugs 
(NSAID), modification of activity levels for daily living, 
intra-articular injections of hyaluronic acid, corticosteroids 
and platelet rich plasma (PRP), etc., joint surgery (4). 
However, these therapeutic strategies for KOA only provide 
symptomatic relief, and cannot alter the natural progression 

of this disease in the clinic. Hence, there is an urgent need 
to develop new strategies to attenuate KOA development 
and relieve the pain induced by KOA.

Recent progress in the development of MSCs open 
the possibility of reversing OA-induced alternations, 
relying on MSCs’ regenerative property along with their 
immunomodulatory and anti-inflammatory capacities. 
MSCs express the cell surface markers CD73, and 
CD90, CD105, but lack of expression of CD14, CD31, 
CD34, CD45, and HLA-DR. Furthermore, MSCs not 
only can spontaneously differentiate into osteocytes and 
osteoblasts in vivo, also could be induced to differentiate 
into adipocytes, chondrocytes, and osteoblasts in vitro (5).  
By examining these cell surface markers as well as multi-
lineage differentiations potential, MSCs have been 
identified and isolated from various tissues, such as bone 
marrow, adipose tissue, umbilical cord, cord blood, amnion, 
placenta, amniotic fluid, and dental pulp (6). Compared 
with MSCs from bone marrow, hAdMSCs are becoming 
more popular for therapy due to ease of acquisition, 
high levels of multipotency, low immunogenicity, and 
high proliferative capacity (7). For these reasons, the 
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therapeutic effects of hAdMSCs have been extensively 
investigated in animal models of different diseases such 
as nerve injuries, metabolic disorders, diabetes mellitus, 
and neurodegenerative disorders (8-11). For example, 
intravenous administration of cultured hAdMSCs improved 
glucose tolerance, increased β cell proliferation, and 
preserved β cell mass in STZ-treated NOD-SCID mice (10).  
As another example, co-transplanting mouse neural stem 
cells (mNSCs) and hAdMSCs significantly increased the 
viability of mNSCs in a rat spinal cord injury model, 
indicating that this novel strategy may be a more effective 
therapeutic strategy to treat this disease (12). Nevertheless, 
the evidence supporting successful reversion of KOA in vivo 
via hAdMSCs administration remains limited.

In the present in vivo study, we examined the beneficial 
effects of cell-based therapy for the alleviation of joint pain 
by intra-articular injection of 1.25×106 hAdMSCs in MMT-
induced KOA rats model. The transplantation of human 
cells in rats made it possible to avoid the largely unexplained 
problems encountered in culture-expanded murine MSCs 
(13,14), and to examine the cells that are the most relevant 
for potential clinical trials in patients with KOA. Here we 
reported an impressively positive therapeutic effects of 
hAdMSCs-based therapy for KOA, which shed light on 
their potential clinical application in the future.

Methods

hAdMSCs isolation, culture and characterization

Human adipose tissue was obtained through elective 
liposuction with informed consent. Isolation and expansion 
of adipose derived MSCs will be undertaken according to 
previously published techniques (15). Briefly, lipoaspirate 
was transferred into 50-ml tube for centrifugation at 400 g 
for 5 min. After digestion with collagenase I solution and 
filtration through a 100-μm filter, stromal vascular fraction 
(SVF) was obtained. Cells were cultured in 175 cm2 flask 
until the third passage for cell therapy. 

Culture-expanded of cells at passage five were analyzed 
with flow cytometry to detect the expressions of cell surface 
markers. The multi-lineage differentiations potential of 
hAdMSCs was evaluated using cell differentiation kits 
according to the manufacturer’s instructions (MoBiTec., 
Lorzestrasse, Germany). The presence of adipocytes was 
identified by Oil Red O staining, chondrocytes by Alcian 
Blue staining, and osteocytes by Alizarin Red S staining. 

Animal studies

Adult male Lewis rats weighing approximately 320 g 
were purchased from Charles River Beijing. The study 
was approved by the Laboratory Animal Care and Use 
Committee of Tongji University and animal care and 
experiments were performed in accordance with the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals. 

The right knee of rats was prepared for OA knee model 
induced by MMT surgery. After one week of recovery, the 
rats were randomly divided into two groups receiving intra-
articular injection of vehicle or 1.25×106 hAdMSCs in 50 μL  
saline solution. Spontaneous distribution of weight between 
the hind limbs was measured with an incapacitance meter 
(IITC Life Science, Woodland Hills, CA, USA) before 
and at defined timepoints during the 28-day period post-
hAdMSCs injection. Weight-bearing distribution (%) 
=[weight on the affected leg/(weight on the unaffected leg + 
weight on the affected leg)] ×100.

Data analysis and presentation

Differences between two independent groups were analyzed 
with Student’s t-test. Data are represented by mean ± 
standard error. All statistical analyses and chart preparations 
were performed with GraphPad Prism 8 software 
(GraphPad Software, Inc., La Jolla, CA, USA). P values less 
than 0.05 were considered significant.

Results

In the present study, these cells showed a characteristic 
spindle-shaped and fibroblast-like morphology, and were 
attached to the plate during cell culture (Figure 1A). To 
examine multiple differentiation potential of hAdMSCs, 
culture-expanded cells at passage three were induced to 
differentiate into adipocytes as assessed by Oil Red O 
staining (Figure 1B), osteoblasts as assessed by Alizarin 
Red S staining (Figure 1C), chondroblasts as assessed by 
Alcian Blue staining (Figure 1D). The results of FACS 
analysis showed that 100% of the hAdMSCs positively 
express CD44, CD73, CD90, CD105, and CD166, whereas 
less than 0.2% were positive for CD14, CD19, CD34, 
CD45, and HLA-DR (Figure 1E). To minimize the risk 
of contamination, the isolation and culture of hAdMSCs 
were performed in a GMP-grade clean room facility, and 
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the preclinical and/or clinical lot was produced under strict 
GMP conditions. These cells were negative for fungi, 
bacteria, and mycoplasmas, and cell viability determined by 
trypan blue exclusion was >95% before cell infusion (data 
available upon request from the corresponding author).

In the present study, rats KOA was surgically induced by 
medial meniscal transection, a validated preclinical model of 
KOA pain that includes cartilage degradation, proteoglycan 
loss, and osteophyte formation, which was similar to those 
that occur in human OA (2). Because of the acute injury, 
cartilage degradation and development of joint pain are 
typical features encountered in MMT-induced KOA. The 
latter is usually determined by an incapacitance meter in 
the so-called weight-bearing test (16). Because of MSCs’ 
regenerative capacity along with their trophic effects, 
we investigated whether hAdMSCs could alleviate the 
development of the MMT-induced joint pain. hAdMSCs 
(1.25×106 cells) were injected into the articular cavity of 

right joints on day 7 post MMT surgery, and weight-
bearing tests were performed at indicated timepoints  
(Figure 2A). After MMT surgery, there was a fall in the 
spontaneous weight-bearing on the surgical joint in 
vehicle-injection rats (Figure 2B,C), indicative of joint 
pain. However, an attenuated response was observed in 
hAdMSCs-injection rats as seen in Figure 2B,C, suggesting 
that hAdMSCs administration efficiently prevent the 
development of osteoarthritis-like joint pain induced by 
MMT. No significant difference was found in body weight 
between the two groups over four weeks (data available 
upon request from the corresponding author).

Discussion

The current study successfully isolated hAdMSCs from 
lipoaspirate tissue samples, which is confirmed by flow 
cytometry and assessment of tri-lineage differentiation 

Figure 2 hAdMSCs therapy attenuated joint pain in MTT-induced KOA rats. (A) Schematic of the time course used for the in vivo KOA 
experiments. D, day. (B) Rats receiving hAdMSCs exhibited an attenuated response to MTT-induced KOA pain. Statistical comparison 
between two groups at each timepoint was performed with Student’s t-test. (C) Area under the curve (AUC) data calculated for days 3, 5, 
7, 14, 21, and 28 postinjection revealed a significant increasement in spontaneous weight-bearing on the affected right hind limbs of MTT 
rats after receiving hAdMSCs injection. Comparison of AUC used a two-tailed unpaired Student’s t-test. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. Data are mean ± SEM, n=12 rats in each group. 
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potential. The hAdMSCs showed specific cell surface 
marker CD44, CD73, CD90, and CD105, and the absence 
of hematopoietic (CD45) and endothelial (CD34) antigens, 
which is consistent with the expression profiles of MSCs 
from bone marrow and umbilical cord (17-20). These 
results also showed that the isolated MSCs were not derived 
from hematopoietic or endothelial cells.

MSCs-based therapies for cartilage regeneration are 
extensively investigated, in both the pre-clinical and 
clinical environment. However, the therapeutic effect of 
xenogeneic AdMSCs transplantation on OA remains to be 
determined. It is natural that AdMSCs allotransplantation 
is more practical and rational than xenotransplantation 
in the treatment of  KOA. However,  i t  should be 
considered that xenotransplantation with hAdMSCs is a 
prerequisite for the ultimate therapeutic goal, which is 
potential clinical trials conducted in an ethical and safe 
manner. AdMSCs are considered as nonimmunogenic 
because they do not express histocompatibility complex-
II (MHC-II). Additionally, AdMSCs possess strong 
immunosuppressive properties mediated by cell-cell 
contact or by their paracrine factors such as transforming 
growth factor-β1 (TGF-β1) and prostaglandin E2 (PGE2) 
(21,22). All of these characteristics allows these cells to 
escape recognition by CD4+ T cells and protects them 
from natural killer (NK) cell-mediated deletion (23),  
which permits allogeneic or even xenogeneic AdMSCs 
transplanted into immunocompetent recipients without 
immunosuppressants .  A  number  of  s tudies  have 
demonstrated excellent therapeutic effects of hAdMSCs 
in animal models of different diseases such as tendon 
injury, multiple sclerosis, acute anal sphincter injury, 
and bone defects without adverse side effects, thus 
indicating immunocompatibility of these cells (24-27). 
Therefore, we evaluated the effectiveness of hAdMSCs 
xenotransplantation in articular cartilage preservation 
in a rat KOA model, as they appear to be a good source 
for cartilage regeneration (28). Our results showed that 
single intra-articular injection of 1.25×106 hAdMSCs 
significantly attenuated MMT-induced joint pain, which 
shed light their clinical applications for the treatment of 
patients with KOA. The xenotransplantation of hAdMSCs 
into immune-competent rats carries a risk of triggering an 
immune response. Here, we found that all of the rats were 
viable and had no side effects during the 28-day period 
post-hAdMSCs injection, suggesting these human cells 
may be immunoprivileged even xenotransplanted into 
immunocompetent recipients. For the KOA patients who 

are not suitable to harvest autologous MSCs, allogenic 
AdMSCs may therefore be an alternative choice. 

Long-term persistence and/or proliferation of the 
human MSCs (hMSCs) in the rat joint is essential in order 
to exert their effects on promoting cartilage protection 
and pain alleviation. Although a number of preclinical 
investigations have demonstrated the efficacy of intra-
articular injection of MSCs for the treatment of OA, the 
fate of the xenotransplanted human cells is still under 
debate. CM-DiI labeled 2×106 human bone marrow MSCs 
(hBMSCs) were injected into the rat’s OA joint, and 
labeled cells cannot be detected at day 7 with the method 
of RT-PCR for human GAPDH, but still detected at  
8 weeks by immunohistochemistry (29). McKinney et al. 
found complete loss of hBMSCs bioluminescent signal in 
the rat knee joint at day 7 post-injection (30). In another 
report, Li and colleagues found that fluorescent signals of 
injected DiD-labeled 2.5×106 hAdMSCs were detectable 
up to 70 days post-injection (31), which was consistent 
with the time for which we observed efficacy at 28 days 
post xenotransplantation of hAdMSCs. The survival 
discrepancies of injected hMSCs among existing reports 
probably arise from different experimental designs, such 
as labeling methods, cell source and number, duration of 
follow-up, or sensitivity of the technique adopted for cell 
tracking analysis. Supporting the concept that cell-therapy 
function as a living drug, Li et al. found that injected 
hAdMSCs were proliferative in rat meniscus and cartilage 
evidenced by positive antihuman ki67 signals, which can 
last for about 10 weeks (31). In addition to self-proliferation 
of hMSCs in rat knee joint, the results from Horie et al. 
showed that intra-articular injected hMSCs were activated 
to express Indian hedgehog (Ihh), bone morphogenetic 
protein 2 (BMP2), and parathyroid hormone-like hormone 
(PTHLH), which contributed to meniscal regeneration by 
stimulating chondrocyte proliferation (29).

Although present study demonstrated the efficacy of 
xenogeneic hAdMSCs transplantation for pain reduction, 
questions remain for a sound understanding of their 
mechanism of action. In addition to paracrine signaling, 
MSCs may act through direct engraftment in concert 
with the local environment (29,32,33). However, it has 
been shown that only a small number of injected hMSCs 
engrafted to the regenerating edge up-regulates the 
expression of chondrogenic genes in rat cells, which 
indicated that the newly regenerated tissue derives 
mostly from the differentiation of the host cells (29,33). 
These data suggest that the recruitment of endogenous 
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cells may play a critical role in MSCs-based therapies, 
through paracrine communication (30). MSCs can secrete 
a variety of paracrine factors that aid in recruit of stem 
and progenitor cells, repair of degraded tissue and, most 
importantly, counteracting inflammation (30,34). For 
example, in response to cartilage degeneration, MSCs can 
induce tissue remodeling by secreting multiple factors such 
as stromal-cell-derived factor (SDF)-1 and interleukin (IL)-
6 (35,36). MSCs can also mediate the immune-suppression 
by constitutively secreting prostaglandin-E2 (PGE2), which 
inhibits the proliferation of T- and natural killer (NK) cells 
but causes an increase in the pool of regulatory T (Treg) 
cells (34). McKinney et al. showed that encapsulation of 
hBMSCs with sodium alginate significantly attenuated 
MMT-induced cartilage degeneration, which indicated that 
MSCs could exert a chondroprotective therapeutic effect 
on early stage OA via paracrine signaling rather than direct 
engraftment (30). 

Here, our results clearly show that intra-articular 
injection of hAdMSCs greatly alleviate OA-induced join 
pain. Nonetheless, the role of direct cellular engraftment 
versus paracrine action of hAdMSCs remains to be explored 
further to accelerate clinical translation of hAdMSCs-based 
therapies.
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