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Introduction

After the theory of the presence of stem cells in the 
population of tumor cells was introduced by Bonnet et al. (1),  
several studies were conducted on how these cells were 
generated (2,3). In this regard, researchers sought to 
characterize cancer stem cells (CSCs) from cancer cell 
populations. Although these efforts gained relative 
success in the early stages of cancer, it failed to isolate a 
homogeneous population of CSCs in advanced stages (4,5) 
(Figure 1).

Subsequently,  while observing a heterogeneous 
subpopulation in leukemia, researchers identified a small, 
clonogenic cell population whose characteristics were 

similar to those of blood stem cells. Given the clonogenic 
and heterogeneous nature of tumors, they suggested that 
there was a rare cell population in cancers that acted like 
stem cells and was responsible for tumor growth and 
metastasis. In fact, the results showed that CSCs could 
be derived from normal stem cells or from committed 
progenitor cells that had obtained self-renewal capacity 
(6,7). These cells are highly similar to normal stem cells with 
respect to self-renewal and metabolic characteristics (2).  
However, there are certain differences between CSCs and 
normal stem cells. These lead to different types of cancer 
cells with varying metabolic activity, and in different 
stages of tumor evolution, guarantee tumor survival under 
severe conditions, even under the influence of strong 
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chemotherapy drugs (8). Many studies have shown that 
CSCs are generated from genetic changes occurring in a 
cell population, and following the formation of these cells, 
the gene expression profile in cancer cells changes (9).  
With the changes in the genetic or epigenetic profiles of 
CSCs, new distinctions were emerged in the molecular 
metabolism, surface markers profile and signaling pathways, 
which were shown to be involved in self-renewal, drug 
resistance, proliferation and differentiation (10,11).

Currently, extremely few drugs with definitive outcomes 
have been developed with high efficacy against CSCs, such 
as salinomycin, cisplatin, doxorubicin, vincristine, paclitaxel 
and their synthetic derivatives, which have a highly 
disruptive impact on various cancer cells (12-17). Because 
of the non-specific toxicity of these drugs in all cells, only 
targeted nano-formulation drugs have the potential to 
target CSCs and break drug-resistance in cancer cells. Many 
nano-formulations have been developed as combinations of 
chemical and biological derivatives such as plant bioactive 
products and microbial secondary metabolites that might 
play a dual role in cancer treatment. For example, curcumin 
and its analogues, which are used in clinical cancer studies 
due to their anticancer and prophylactic effects, are able to 
decrease the side effects of chemotherapy and radiotherapy 
on normal tissues (12,18,19).

Another challenge lies in drug delivery to brain tumors 
that are strictly protected by brain-blood barrier (BBB). 
Actually, the BBB has been constituted of highly regulated 
structure that does not allow drugs present in blood 
circulation to be enter the brain tissue. Thus, many efforts 
have been conducted to develop effective drug delivery 
systems that are able to across the BBB. In this regard, 
to efficiently deliver therapeutic molecules to the tumor 
location in the brain, various nanopharmaceutical systems 
have been formulated such as lipid-based nanoparticles, 

hydrophobic nanocarriers, functionalized compatible 
polymeric nanoparticles etc (20-25). 

Developing nanotechnology-based therapeutic systems 
have improved many of the known limitations of anticancer 
drugs, such as low water solubility, stability and non-specific 
toxicity (19,26). Additionally, these nanodrug formulations 
have indicated high potential of controlling the release 
of anti-tumor drugs and protecting them from rapid 
metabolization and elimination. The controlled release of 
drugs, rational design of specific targeting of cancer cells 
and accurate diagnostic techniques of these cells can help 
to treat cancer (27,28). In this respect, by detecting specific 
properties of CSCs, various formulations were developed 
via designing effective nanodrugs, which specifically target 
CSCs in tumor tissues (29,30). 

This review paper discussed key pathways involved in 
the development and survival of tumor cells that may be 
appropriate targets for the design of antitumor drugs based 
on nanoscale formulations.

Targeting active genes in CSCs

New approaches to target genes that implicate in drug 
resistance, self-renewal and in CSCs are developed based 
on gene silencing by specific RNA inhibitors such as 
siRNAs, miRNAs and LncRNAs (31-35). For example, 
MDR1 gene silencing in drug-resistant tumors can reduce 
the expression of P-gp transporters and increase the 
efficacy of chemotherapy (36). The low sustainability and 
accumulation of these therapeutic molecules have led to 
many efforts in recent years to design nanodrug delivery 
systems. For example, in a study of siRNA against Signal 
transducers and activators of transcription (STAT3) in 
PEI-PLGA nanoparticles as a part of a combination 
treatment, paclitaxel-siRNA was used for A549/T12 
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Figure 1 A schematic of the classical therapeutic approaches against a tumor growth. In the heterogeneous differentiation model, CSCs 
having potential of resistance to radiation and chemotherapy can cause recurrence of the tumor. CSCs, cancer stem cells.
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(paclitaxel-resistant cell line) (37). In another study, a lipid 
based nanocarrier was used to effectively deliver siRNA 
to lung cancer cells, A549 (38). In one other study, two 
siRNA including STAT3 and GRP78 were delivered 
using polycation-functionalized nanoporous silicon 
microparticles, resulting in suppressed STAT3 expression in 
MDA-MB-231 breast cancer cells and reduced self-renewal 
capacity of CSCs in tumor tissues (39). 

CSCs targeting via specific surface markers 

By characterizing the metabolic pathway, genetic profile, 
resistance pattern and microenvironmental condition 
in CSCs, many efforts were conducted to target these 
specialized factors via nanodrug delivery (40). Many surface 
biomarkers, specific to CSCs, such as Cx43, CD44, CD133 
and CD34+ can be used as targets for cancer treatment 
(38,41-43). Therefore, one of the most effective strategies 
for targeting various tumor cells is to link nano-formulations 
of drugs to specific antibodies against tumor markers. To 
treat pancreatic and breast cancer, efficient nano-magnetic 
particles in combination with gentamicin and in conjugation 
with anti-CD44 were applied for targeting CD44 marker 
in the surface of adult cancer cells (ACCs) and CSCs. 
This nano-formulation successfully eliminated complete 
tumor cells, especially CSCs (44). In addition, an efficient 
formulation of nano-curcumin was found to significantly 
inhibit anchorage-independent clonogenic growth and also 
reduce the stem cell population CD133 in medulloblastoma 
and glioblastoma (45). In another study, vincristine/silver 
nanoparticles conjugated to an anti-ABCG1 antibody was 
exploited for targeting myeloma cancer cells, which resulted 
in a synergetic cytotoxic effect on tumor cells in mice (46). 
Yang et al. (2014) applied an efficient formulation as a 
combination of γ-Fe2O3 nanoparticles and paclitaxel that 
was conjugated with anti-ABCG1 for inducing apoptosis 
gene expression and downregulation of the NF-κB gene in 
multiple myeloma CSCs (47).

Thus, with the advent of CSCs manifesting unique 
properties such as self-renewal ability and overexpression 
of surface markers, these specific surface markers are found 
to be ideal targets for designing novel drug formulations 
that are able to select and eliminate CSCs subpopulation 
(28,48,49). 

These studies have led to the identification of a wide 
range of markers on the surface of CSCs. Some of the most 
specific markers for CSCs in human and animal cells are 
introduced in Table 1.

Signaling pathways for drug targeting

Molecular signaling pathways that control the homeostasis 
of normal stem cells are tightly regulated. These regulations 
are disrupted by changes occurring in many cancerous cells. 
Numerous studies have demonstrated that abnormalities 
in the cell regulatory system play a critical role in the 
promotion of self-renewal, cell survival, proliferation and 
differentiation of CSCs. During the tumor progression, 
the ability to self-renew CSCs may be increased, weakened 
or even missed through subsequent mutations (55,87,88). 
In fact, these signaling pathways may activate some genes 
involved in the formation of CSCs and relapse of cancer 
after chemotherapy. The signal network involved in the 
development of cancer covers many pathways, which 
express numerous cell surface markers, i.e., cell membrane 
proteins (89). These tumor markers are useful indicators for 
the design of diagnostic tests and also important targets for 
targeting antitumor medications drugs. 

As CSCs can survive radiation and chemotherapy, 
specific identification of all tumorigenic components can 
represent an effective therapeutic strategy for targeting 
tumor integrity. In this regard, many efforts have been 
adopted to identify mechanisms of signaling involved in 
self-renewal, differentiation and proliferation. Table 2 shows 
some signaling pathways including Hedgehog, Notch, 
Wnt/β-catenin, BmiI1, PTEN and TGF-β, which might 
be responsible for proliferation, proliferation, malignancy, 
drug resistance and tumor recurrence.

These signal pathways are currently attractive targets 
for drug delivery to tumor tissues, especially CSCs. Many 
efforts are made to disrupt signals associated to tumor 
progression as well as to self-renewal and differentiation of 
CSCs, which may lead to complete removal of a tumor. 

One of the most important signal pathways is the Wnt/
β-catenin pathway that is known as an essential activator 
of several transcription factors responsible for survival, 
self-renewal and differentiation properties of normal stem 
cells. It also appears that the Wnt/β-catenin signaling 
pathway can play a pivotal role in the formation of CSCs 
and establishment of their self-renewal capacity (90-92). 
In this regard, the role of the Wnt signaling pathway has 
been significantly confirmed in recurrence of breast cancer 
and myeloid leukemia as well as in progression of liver 
fibrosis alteration (93-96). In this context, Mao et al. (2014) 
showed that suppression of the Wnt signaling pathway led 
to the inhibition of the proliferation of CD44+Oct4–CSC 
subclone (97).
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Another important signal pathway is Hedgehog 
that regulates several genes during the development of 
embryogenesis in normal cells. Evidence shows that the 
abnormal activation of Hedgehog pathways promotes 
tumor cells to produce CSCs clone and enhance chemo-
resistance and survival via induction of self-renewal 
capacity in CSCs (98). Since the crucial role of Hedgehog 

pathways has been well documented by several studies, 
nanodrugs targeting the regulatory molecules of Hedgehog 
pathways are good candidates for cancer therapy. In this 
respect, several nano-based drug formulations including 
nanopolymers containing anticancer drugs, siRNA, 
miRNA and drug-gene combination systems have been 
designed that target various molecules of Hedgehog 

Table 1 Main specific markers that were found to be present over the various CSCs

Types of CSC origin Specific marker Reference

Prostate cancer CD133+/alpha2 beta 1 integrin/CD44+, BMI-1, CD49f, integrins α2/β1, SCA-1, 
OCT3/4

(50,51)

Brain cancer Cx43, CD133+, CD44, CD163, CD15+, CD49f+, CD90+ (52-57)

Colorectal cancer CD133+/CD26+, CD133+/CD44+/ALDH1+, EpCAM+/CD44+, CD166+, CD44+/
CD24+, Lgr5+/GPR49+, CD133+, CD44+, CD166+, E-CAMhig

(58-61)

Acute myelogenous leukemia and  
Ph1-acute lymphogenous leukemia

CD34+, CD38−, CD44, CD123+, CD90−, CD19+ (1,62-64)

Chronic myeloid leukemia CD34+, CD38−, CD123+, CD26+ (65,66)

Blast-crisis CML CD34+, CD38+, CD123+ (63)

Bone sarcomas Stro-1+, CD105+, CD44+, NKX2 (67,68)

Pancreatic cancer CD133+, CD44+, CD24+, ESA+ (69,70)

Breast cancer CD44+, CD24−/low, ESA+, CD49hi, ALDH1+, CD133+, EpCAM+ (71-73)

Head and neck squamous cell carcinoma CD44+, ALDH+, CD44/CD133 (74-76)

Gastric cancer CD133+, CD44+, Lgr5, CD90+, CD71− (40,77,78)

Melanoma CD20+, CD133+, ABCB5+, nestin, CD271+ (48,79)

Hepatocellular carcinoma CD133+, CD90+, CD90+/CD45, EpCAM+, CD13+, CD133+/CD49f+, CD44+ (80-82)

Ovarian cancer CD44+, MyD88+, CD133+ (83,84)

Lung cancer ALDH1+, Sca1CD45-PecamCD34, CD133+, CD90+ (85,86)

CSCs, cancer stem cells; CML, chronic myeloid leukemia.

Table 2 Signaling pathways involved in the self-renewal process of some CSCs

Tumor type Signal pathway Reference

Breast Wnt/β-catenin, Hedgehog, Notch, PI3K/Akt/PTEN/mTOR, NF-κB, Jak/STAT (74,75)

Glioblastoma Hedgehog, Notch, PI3K/Akt/PTEN/mTOR, cAMP-Epac, NF-κB, Jak/STAT (29,76-78)

Leukemia Wnt/β-catenin, Hedgehog, PI3K/Akt/PTEN/mTOR (79)

Gastrointestinal NF-κB, Wnt/β-catenin (80)

Liver fibrosis Wnt/β-catenin, Jak/STAT (81,82)

Prostate Jak/STAT, PI3K/Akt/PTEN/mTOR, (40,83)

Lung PI3K/Akt/PTEN/mTOR, Wnt/β-catenin (84,85)

Osteosarcoma Notch, Wnt/β-catenin, PI3K/Akt/PTEN/mTOR, RANKL/RANK (86,87)

https://journals.lww.com/ajsp/Abstract/2012/07000/NKX2_2_is_a_Useful_Immunohistochemical_Marker_for.8.aspx
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pathways in CSCs and/or ACCs (99-102). 
The Jak/STAT pathway is a modulatory pathway that 

induces multiple signal cascades involved in self-renewal, 
proliferation and differentiation of CSCs. To inhibit 
the abnormal expression of Jak/STAT mediators, many 
efforts have been made through specific targeting by using 
nanosize molecules carrying different anticancer drugs or 
delivering some types of genes for suppressing oncogenes 
and/or activating apoptosis genes (34,37). 

The Notch pathway is composed of five ligands (DLL1–4 
and JAG1–2) and four receptors (Notch1–4) making up an 
integral transmembrane protein. Activation of the Notch 
pathway occurs through binding the related ligands to 
receptors on the surface of adjacent cells (48,61,103). This 
pathway contributes to development of embryonic stem 
cells and guarantees CSCs survival in cancer cells when 
Notch signaling is enriched by aberrant upregulations of 
related genes (80). On the other hand, with inhibition of 
the Notch pathway, self-renewal, clonogenic potential, 
chemoresistance and radioresistance ability significantly 
decrease (104). 

The PI3K/Akt/PTEN/mTOR network pathway is 
evolutionarily conserved molecular network that has shown 
to possess a strategic role for controlling proliferation 
and differentiation. Recent studies have demonstrated the 
role of the PI3K/Akt/mTOR signaling pathway in tumor 
metastasis, propagation, and angiogenesis. Activation of 
PI3K increases the chemoresistance capacity of cancer 
cells occurring by overexpression of multidrug resistance 
protein 1 (MDRP-1) (32). PTEN acts as a negative 
regulator in PI3K/Akt signaling that can inhibit metastasis 
and autophagy by inhibiting the Akt/mTOR pathway. 
Additionally, PTEN signaling effectively contracts the 
PI3K activity leading to inactivation of self-renewal capacity 
as well as radio and chemoresistance functions in CSCs (99). 
Therefore, the PI3K/Akt/PTEN/mTOR network pathway 
appears to be an ideal target for cancer therapy using nano-
based drug formulations (41,99,105). 

A n o t h e r  i m p o r t a n t  p a t h w a y  c o n t r i b u t i n g  t o 
development of CSCs properties including self-renewal, 
proliferation and differentiation properties is NF-κB 
complex that consists of five proteins with dimmers active 
feature. This complex is normally inhibited in cells by 
an inhibitor called IκB protein (61). Activation of NF-κB 
takes place by binding ligands such as TNF-α, IL-1β and 
bacterial cell ghost, resulting in ubiquitination/degradation 
of the IκB inhibitor and then in release of NF-κB, 
migration to nucleus and activation of gene transcription. 

Mutation in NF-κB has been shown to cause malignancies 
in several cancer cells such as gastrointestinal, thoracic, 
and head and neck malignancies as well as breast cancer 
and other tumors (106).

As can be reviewed in Table 1, signaling pathways 
contribute to acquisit ion of CSCs properties and 
consequently enhance survival with self-renewal and 
promote recurrence of the tumor after a conventional 
therapeutic regime such as radiation and chemotherapy. 
Currently, many researchers have focused on designing 
various nano-vehicles such as nanoparticles, nanocapsules 
and nanoemulsions, nanobiopolymers, nanolipid particles, 
graphene-based nanocomposites, etc. These formulations 
have been applied for loading various anticancer drugs, 
herbal drugs, and chemical and bacterial toxins for targeting 
tumor cells (107-110). Additionally, nano-vehicles have 
been documented to be efficient carriers for gene delivery 
into tumor cells to induce apoptosis pathways and inactivate 
resistance genes. Table 3 presents some nano-vehicles 
applied for targeting tumor tissues, which are capable of 
eliminating CSCs.

Removal of CSC niche

Various abnormalities in the tumor tissues have offered 
some advantages such as radiation and drug resistance, 
tumor growth promotion, invasion and malignancy for 
cancer cells. Tumor microenvironment is highly abnormal 
region that caused by metabolic changes such as acidic pH, 
hypoxic condition, redox potential change, up-regulation 
of secreted proteins and hyperthermia. This unique 
condition can be applied to design drug formulations 
based on nanotechnology, which specifically target tumor 
cells (121-123). 

Several studies are being conducted to develop various 
physico-chemical methods for destruction of cancer cells 
and their environments. In some of them, the goal is to 
release nanoparticles containing the drug, which is followed 
by photodynamic therapy with radiation (114). In various 
studies, gold nanoparticles of 10–20 nm in diameter 
modified with specific antibodies against EGFR1 or MUC1 
have been used (124). Radiation to gold nanoparticles 
causes a localized increase in temperature around the 
tumor, leading to rapid destruction of cancer cells, in which 
these nanoparticles accumulate (125). Wolf et al. (2015) 
have recently used goserelin-conjugated gold nanorods 
to increase radiosensitization for effective internalization 
of gold nanoparticles to prostate cancer cells through 

https://www.sciencedirect.com/topics/medicine-and-dentistry/nanorod
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Table 3 Nano-formulations of anticancer drugs for targeting different cancers.

Formulation type* Tumor type** Function*** Reference

Paclitaxel (Ptx) loaded in folic acid-
PLGA

Ovarian cancer Induction and high expression of apoptotic factors in CSCs (13)

Gemcitabine combined with iron oxide 
magnetic NPs and functionalized with 
anti-CD44 antibody

Human pancreatic  
cancer and breast  
cancer

Inhibition of proliferation in both CSCs (44)

Acetazolamide alone or combined with 
temozolomide

Glioblastoma  
multiforme

Removal of CSCs in exposing with the combined treatment (111)

Lawsone encapsulated in noisome Breast cancer Encapsulation increased antitumor activity of lawsone against 
MCF-7 cells

(112)

Difluorinated curcumin encapsulated in 
liposome

Head and neck  
cancer

Inhibition of proliferation in cisplatin resistant CSCs (76)

Salinomycin in combination with 
graphene oxide-AgNPs (RGO)

Human ovarian  
cancer

Combined formulation increased apoptosis levels in the cells 
5-fold more than single therapy

(113)

Salinomycin Encapsulated in PEG-PLA 
copolymer

Pancreatic cancer Increase of cell mortality through induction of apoptosis (14)

Magnetic-nanoemulsion of 
chloroaluminum phthalocyanine 
combination to hyperthermia and 
photodynamic therapy

Mesenchymal  
stem cell

Reduction of cell viability by photodynamic therapy in 
combination to magnetic nanoparticle/chloroaluminum 
phthalocyanine formulation

(114)

AgNPs combined with vincristine 
and functionalized with anti-ABCG2 
monoclonal antibody

Myeloma  
cancer (mice)

Inhibiting the growth of myeloma CSCs CD44+CD24− CSC (46)

Graphene oxide (GO) nano-therapy Breast, ovarian,  
prostate, lung,  
pancreatic and 
glioblastoma 
(brain)

Inhibition of signal transduction pathways (Wnt, Notch and 
STAT-signaling) by striking effects and differentiating the CSCs

(91)

cisplatin and demethoxycurcumin 
loaded in amphiphilic carboxymethyl-
hexanoyl chitosan

Lung cancer MDR lung CSCs were significantly targeted by CD133-
biofunctionalized nanoparticles and inhibit using drugs

(12)

Doxorubicin encapsulated in liposome Liver cancer Induction of apoptosis in HepG2 cells by activating caspase-3 (16)

microRNA-34a delivery using nano-
vesicle

Gastric cancer Targeting tumor cells by gene delivery and inhibiting the growth 
in CD44-positive tumor-bearing mouse models

(31)

Magnetic nanoclusters (MNC) exposure Breast cancer Hyperthermia mediated magnetic field progressed apoptotic cell 
death

(115)

A cocktail of Ptx, the thioridazine and 
the PD-1/PD-L1 inhibitor loaded in 
micelle-liposome double-layer structure

Breast and lung  
cancer

Suppressing the metastasis process in lung cancer cells and
Inhibition of the growth of breast cancer cells

(116)

mesoporous silica nanoparticle (MSN) 
with anti-CD133 antibody linked to MSN 
along with thermal treatment

Breast  
adenocarcinoma  
cancer

Nano-delivery system efficiently inhibits the tumor growth (117)

Ptx and siRNA loaded in polymeric 
nanostructure containing PEI(1200), 
polyethylene glycol and a lipid carrier

Colon cancer Silencing the multidrug resistance gene (MDR1) by siRNA 
exhibited synergistic effect with Ptx

(32)

Table 3 (continued)
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Table 3 (continued)

Formulation type* Tumor type** Function*** Reference

miRNA delivery by poly-β-amino ester 
nanoparticles

Glioblastoma Co-delivery of two miRNAs, miR-148a and miR-296-5p, using 
the nanopolymer functionalized-bioreducible amino ester group 
enhanced survivability of mice bearing glioblastoma

(33)

Combination of nanoquinacrine (NQC) 
and GW280264 (ADAM-17 inhibitor 
loaded in PLGA

Cervical cancer  
(CC)

Combination treatment of the cells with NQC and GW280264 
decreased the proliferation and invasion rates, induced nectin-4 
expression resulting in metastasis inhibition and the activation 
of base excision repair (BER) pathway

(118)

Gene delivery (PCPS-STAT3 siRNA and 
PCPS-GRP78 siRNA) using polycation-
functionalized Nanoporous silicon 
microparticles (PCPS)

Breast cancer Delivery of PCPS-STAT3 siRNA and PCPS-GRP78 siRNA 
reduced STAT3 expression in MDA-MB-231 breast cancer cells, 
causing remarkable reduction of CSCs in the tumor tissue

(34)

Ptx encapsulated in liposome Ovarian cancer Intraperitoneal delivery of nanoliposome-Ptx shifted metabolic 
program toward the oxidative phosphorylation and resulted in 
the suppression of CSCs

(119)

Zinc sulfide (ZnS) nanoparticles Breast cancer ZnS nanoparticles exhibited high potential of inhibition against 
migration and invasion of CSCs

(120)

Disulfiram in combination with copper, 
CI-isobologram, 5-FU and sorafenib 
encapsulated in PLGA

Liver cancer DS-PLGA combined with copper, significantly inhibited the 
liver CSCs. CI-isobologram exhibited significant synergistic 
cytotoxicity against liver cancer when co-delivered with (5-FU)-
DS-PLGA or sorafenib-DS-PLGA

(96)

Gamma-Fe2O3@DMSA in combination 
with Ptx and anti-ABCG2 monoclonal 
antibody

Multiple myeloma  
cancer

Ptx and anti-ABCG2 antibody remarkably inhibited the growth 
of CD138−CD34− cells through elevation of expression of 
caspase-9, caspase-8 and caspase-3, and down-regulation of 
NF-κB were observed in CSCs

(47)

Epirubicin absorbed on nanodiamonds Hepatic cancer Epirubicin-nanodiamonds showed an enhanced cytotoxicity 
against both CSCs and non-CSCs in vitro and in vivo

(17)

Ptx and STAT3 siRNA loaded in PLGA-
PEI

Lung cancer PLGA-PEI-Ptx-S3SI efficiently suppressed STAT3 expression 
and induced the activation of apoptosis pathway in A549 and 
A549/T12

(37)

*, the first column demonstrates various types of nanoformulations that obtained from current therapeutic systems; **, second column 
shows tumor cells or tissues that were treated by nanodrugs; ***, third column summarized function of nano-vehicles. NPs, nanoparticles; 
CSCs, cancer stem cells; AgNPs, silver nanoparticles; RGO, reduced graphene oxide; CI, combination index; 5-FU, 5-fluorouracil.

interaction between goserelin with related receptors (126). 
In a study on treatment of breast cancer spheroids, lipid and 
polymer nanoparticles containing drugs were used along 
with ultrasonic waves. Effective treatment for solid tumors 
requires uniform distribution of anticancer drugs in all 
parts of the tumor, and the lethal concentration of the drug 
should be delivered to all resistant cells and CSCs (127). 
However, penetration of lipid and polymer nanoparticles 
into hypoxic and necrotized areas of solid tumors, which 
contain a large number of CSCs, is a major challenge (128).

Perspective of CSCs

With the assumption of the CSC hypothesis as the major 
cause of recurrence, heterogeneity and drug resistance of 
cancer, many researchers concluded that achievement of 
an effective treatment strategy for complete eradication 
of tumor masses by focusing on CSCs behavior could be 
the only way to permanent success in cancer therapy. In 
fact, such unclear issues related to CSCs refer to aberrant 
expression of some key genes involved in regulation and 
integrity of genome and epigenome (35,129,130). In 
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some tumors, which genetic changes do not occur at the 
phenotype surface, genetic differences can be detected 
among cancer cells subpopulations through genomic 
profiling studies, which can provide a rational solution for 
targeting CSCs inside the tumor masses (10). However, it 
should be noted that despite recent advances in CSCs, due 
to the highly complicated behavior of CSCs, for targeting 
this rare population, an in-depth knowledge is needed about 
details of specific features of CSCs so that a successful 
therapeutic outcome could be obtained. 

Conclusions

For treating cancer, the disease must be first recognized 
well ,  which can be accelerated and faci l i tated by 
identification of CSCs. Many researchers believe that 
instead of concentrating on the treatment of solid tumors, 
we must focus on the metastasis and complete removal of 
cancer cells, and in this way, strategies should be utilized 
to overcome drug resistance and combination therapies. 
Nanomedicine has a high potential to accelerate the 
development of effective strategies for treating drug 
resistance and recurrent cancers. Despite known advances 
in drug delivery systems and development of nano-based 
approaches, serious barriers have remained unresolved, 
including inappropriate absorption and distribution in 
tumor tissues, obstruction by limbs and reticuloendothelial 
system macrophages after systemic administration and 
limited oral bioavailability of these therapies in vivo 
conditions. It is hoped that the new therapeutic strategies 
based on nanotechnology could pave the way for eradication 
of cancer, which is currently a serious concern worldwide.
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