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Introduction

Cancer is a genetic disease that arises due to somatic 
mutations which results in a functional imbalance between 
tumour repressive and oncogenic signals (1). According 
to the World Health Organization (WHO), cancer is the 
second leading cause of death globally. The major cause 
of cancer-related death is rarely the effect of the primary 
tumour itself, but rather, the devastating spread of cancer 
cells in metastases (2). 

Epithelial-mesenchymal plasticity (EMP) plays a 
fundamental role in cancer metastasis. EMP is termed as 
the ability of cells in maintaining its plasticity and transit 
between epithelial-mesenchymal transition (EMT) and 
mesenchymal-epithelial transition (MET) states (3). These 

cell transitions allow them migrate from primary tumour 
and invade at the secondary site (4). EMP is associated 
with migration, invasion, colonisation, self-renewable and 
drug resistance (4-6). Although much research has delved 
into the process of carcinogenesis leading to metastasis, 
the crux of EMP mechanisms and its microenvironment 
remains poorly understood. This review briefly elucidates 
the mechanism of EMP, the association of cancer stem 
cells (CSCs) and circulation tumour cells, biomarkers 
and signalling pathways involved in EMP as well as drug 
resistance and therapeutic targeting. 

EMP

The ability of tumour cells to undergo EMT and the reverse 
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differentiation process MET is termed as EMP. EMP is the 
dynamic flux within the spectrum of phenotypic states that 
invasive carcinoma cells may reside (4). EMT is significant 
during embryogenesis, wound healing, fibrosis and cancer 
metastasis as the cells transit between epithelial and 
mesenchymal states in a highly plastic and dynamic manner 
which can help in the understanding of human disease and 
tumour progression (7). EMT is associated with several 
traits, which are decreased cell-cell adhesion; alterations 
of cytoskeleton, tight junctions and hemidesmosomes; 
loss in apical-basal polarity and gain of front-rear polarity; 
promote migration and invasion of cells by degrading and 
remodelling extracellular matrix, and ultimately, colonise 
at the secondary site (8,9). Moreover, EMT is associated 
with drug resistance, evasion of the immune system and the 
ability to generate CSCs (4,8). Several microenvironment 
conditions may induce EMT, such as the activation of EMT 
transcription factors which include ZEB, Snail, and Twist; 
matrix stiffness and hypoxia (8,10). EMT transcription 
factors contribute to tumour progression by inducing 
resistance to apoptosis and maintaining stem-like properties 
demonstrated in recurrent tumours (10). 

However, during EMT progression, cells can exhibit 

a hybrid epithelial/mesenchymal (E/M) phenotype, of 
which the cells will co-express epithelial and mesenchymal 
markers (11-13) (Figure 1). It has been shown that cells 
exhibiting this mix of phenotypes will allow them to migrate 
collectively during mammary gland formation, trachea 
development and wound healing (12,14). In addition, 
collective cells would also be seen in migration as CTC 
clusters in the bloodstream of breast, lung and prostate 
cancer patients (15-18). CTC clusters that co-express 
epithelial and mesenchymal markers can enter and exit the 
bloodstream more efficiently, posing a higher metastatic risk 
in cancer cells (11,19). Stemness is also associated with cells 
that adopt the hybrid E/M state (11). As the clusters reach 
the distant target site, they will undergo MET which allows 
them to regain cell-cell adhesion and exhibit an epithelial 
phenotype, and thus colonise secondary site forming a 
secondary tumour. MET is found to be an essential driver 
in the later stages of metastasis. 

In summary, the most striking difference between these 
three cell states is that EMT is crucial for the transformation 
of a benign tumour to an invasive carcinoma; cells in the 
hybrid E/M state are more aggressive and responsible for 
the migration of clusters in bloodstream; whereas MET is 

Figure 1 The dynamic mechanism of EMT in cancer metastasis, highlighting the epithelial (E), hybrid (E/M), and mesenchymal (M) 
states of neoplastic cells. The fluidity of phenotypic change eases the transformation into CTCs in the blood or lymphatic circulation, 
which eventually invade a secondary distant site and reform epithelial cells via MET. CTCs, circulating tumour cells; EMT, epithelial-
mesenchymal transition; MET, mesenchymal-epithelial transition. 
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crucial for the colonisation at distant sites. 

CSCs and circulating tumour cells (CTCs)

EMP induces  tumour  ce l l s  to  deve lop s tem ce l l 
characteristics, which promote cells to invade surrounding 
tissues and contribute to resistance against therapeutics. 
These cells are inherently termed ‘cancer stem cells’. 
CSCs are a group of cells that are capable of self-renewal, 
initiate tumour generation, and undergo heterogeneous 
differentiation (20). 

EMP also plays a critical role in disseminating tumour 
cells into the haemodynamic circulation, which is known as 
CTCs (9,21). CTCs are known as individual cells that dissolve 
from the primary tumour and enter the circulation during 
the tumour outgrowth (22). In addition, EMT facilitates the 
entry of CTCs into blood circulation by activation of the 
transforming growth factor-beta (TGF-β) pathway. CTCs 
are able to survive in circulation due to the presence of more 
mesenchymal-shifted cells in the clusters (21). 

CSCs express specific cell-surface markers, namely 
CD24, CD44, CD133, CD200, epithelial cell adhesion 
molecule (EpCAM), ATP-binding cassette B5 (ABCB5) 
and THY1. The most significant property of CSCs is 
that it downregulates and upregulates the expression of 
CD24 and CD44 glycoproteins respectively. However, 
specific cancer types express unique cell surface markers 
and their level of expression depends on their phenotype 
and properties (9,23). For example, breast carcinoma cells 
express CD44high/CD24low, lung carcinoma has an elevated 
expression of CD44 and CD133, prostate carcinoma cells 
express EpCAMlow/CD24low, while colon carcinoma cells 
express CD133high/CD26low (9). 

EMT biomarkers 

In the course of EMT, the alteration of cellular phenotypes 
leads to the advent of specific biomarkers. Identification 
of biomarkers is clinically important in tumour diagnosis 
as the tumour biomarkers can be utilised in cancer patient 
therapy and enhance prognostic value (24). E-cadherin is 
a plasma membrane protein expressed by epithelial cells, 
which is responsible for maintaining cell adhesion as well as 
tight junction proteins (ZO-1). 

As mentioned, when EMT is in progress, cells will lose 
their adhesion and polarity characteristics. Thus, there 
will be reduced expression of E-cadherin, and vimentin 
filaments will be produced (24,25). Loss of E-cadherin is 

said to be the hallmark of EMT (26). Mesenchymal markers 
such as N-cadherin, Snail, Slug, Twist, fibronectin and 
ZEB1 levels increase accordingly during the EMT process 
(27-29). An upregulation of N-cadherin expression with 
concomitant downregulation of E-cadherin contributes to 
the loss of cell-cell adhesion (30). Snail and Slug are Zinc-
finger transcriptional factors which bind to the E-box of 
proximal E-cadherin promoter CDH1, and ultimately 
suppress E-cadherin transcription resulting in the disruption 
of cellular tight junctions (31-33). 

Cytokeratin, a cytoplasmic intermediate filament protein, 
is the main structural element that make up the cytoskeleton 
in epithelial cells. It functions to maintain structural rigidity 
and multipurpose scaffolds. Recent studies show that 
cytokeratin 19 (KRT19) and CK19 is upregulated in breast 
cancer and lung cancer respectively (34,35). Not only that, 
overexpressed CK19 can be seen in most of the epithelial 
malignancies, such as cervical, colorectal and thyroid 
carcinomas. Keratin content increases when epithelial cells 
undergo EMT and transform into cancer cells (35). 

Interestingly, extracellular vesicles also play a critical 
role in transitioning to mesenchymal-like cells. They 
help in migration between disseminated tumour cells and 
other cells in the tumour microenvironment by cell-cell 
interaction. Extracellular vesicle contents change with 
phenotypic alterations. Recently, many studies have shown 
that extracellular vesicles are associated with metastasis 
(24). For example, in an N-SMase2-knockout transplanted 
breast cancer model, the reduction in extracellular vesicles 
attenuated tumour metastasis (36). The reasons that 
highlight extracellular vesicles as ideal biomarkers for cancer 
prognosis and surveillance are their non-invasive sampling, 
high stability and sensitivity, ability to represent parent 
cells, and tumour-specific RNA molecules are transported 
in biological fluids throughout the body (24). 

Regulation of EMP by microRNAs

miRNAs are small, non-encoding RNAs that regulate gene 
expression by binding to mRNA, leading to translational 
silencing and subsequently repress protein production 
(37,38). Several studies have shown that miRNA expression 
in serum extracellular vesicles may be useful as biomarkers 
for various cancers such as non-small-cell lung carcinoma 
(NSCLS), liver metastasis, chronic lymphocytic leukaemia, 
colorectal cancer, pancreatic cancer and tongue squamous 
cell carcinoma (SCC) (39-43). For instance, a low expression 
of miR-146a-5p is associated with higher recurrence 
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rates in NSCLS patients compared to subjects expressing 
high levels (39). Other markers include miR-21, which is 
associated with oesophageal cancer recurrence and distant 
metastasis, miR-638 is correlated with liver metastasis and 
colorectal cancer, and miR-125b is implicated in advanced 
melanoma (24). 

Many studies have illustrated that the modulation of 
miRNA expression not only contributes to tumorigenesis, 
metastasis, and multi-drug resistance, but also tumour 
response to treatment in various cancers (44-46). 
miRNAs target a multitude of signalling pathways and 
transcription factors, causing the aberrant mechanisms 
such as dysregulation of protein translation. A recent 
study showed that overexpression of miR-21 promotes 
invasion and migration, and decreases apoptotic effects 
induced by cisplatin in lung adenocarcinoma and gastric 
cancer cells respectively (40,47). Overexpression of miR-
223 and miR-221 are shown to correlate with resistance 
towards Gemcitabine and 5-fluorouracil in pancreatic and 
oesophageal cancers respectively (48,49). Conversely, the 
inhibition of miR-223 reversed the EMT phenotype (49) 
while knockdown of miR-221 seemed to result in increased 
apoptosis, restored chemosensitivity and inactivation of the 
Wnt pathway (48). 

Signalling pathways involved in EMT stimulation 

EMT is induced through the activation of several signalling 
pathways; the three most common being TGF-β signalling, 
Wnt-β-catenin pathway and Notch. Most of the time, these 
pathways and transcription factors will eventually lead to 
E-cadherin regulation by binding to the E-box of its DNA 
sequences (50,51). 

The Wnt pathway is activated when Wnt ligands bind 
to seven-transmembrane receptor Frizzled (FZD) and low-
density lipoprotein receptor-related protein (LRP), which 
subsequently accumulate and stabilise β-catenin, and then 
translocate into the nucleus and regulate gene expression 
(52,53). β-catenin is a co-activator of the TCF/LEF family 
that regulates Wnt target gene expression levels. Beta-
catenin pathway-related genes that regulate its stability may 
be mutated and stimulate incessant β-catenin activity, for 
example in adenomatous polyposis coli (APC). Glycogen 
synthase kinase 3β (GSK3β) and casein kinase Iα (CKIα) 
upregulate levels of β-catenin in the nucleus, subsequently 
activating Wnt target genes (54,55). Abnormal activation of 
Wnt signalling is shown to induce EMT (56,57). 

It is well-established that TGF-β signalling is one of the 

major pathways that promote EMT through the activation 
of SMAD family (Smad 2 and Smad 3) proteins which will 
translocate to nucleus and act as a cofactor in transcription 
of target genes (58). Several mesenchymal markers such 
as Snail, Slug, Twist and ZEB1 are induced through Smad 
signalling, which will subsequently repress E-cadherin (59). 
Interestingly, the Wnt pathway can cross talk with TGF-β/
SMAD due to the removal of β-catenin from adherent 
junctions in a process that involves TGF-β-dependent 
PTEN dissociation from β-catenin and Akt activation (60). 

The Notch signalling pathway is activated when Notch, 
a transmembrane receptor binds to the transmembrane 
ligands, Delta and Jagged. Ligand binding causes cleavage 
in Notch to release Notch intra-cellular domain (NICD) 
which will then enter the nucleus and activate the Notch 
pathway (61-63). Studies have shown that Notch activity 
downregulates E-cadherin and upregulates Snail (64,65). 
A recent study has revealed an inhibitor of the Notch 
signalling pathway—Numb, which can essentially prevent 
cells from undergoing a full transition into the mesenchymal 
phenotype (66). 

Further investigations are indispensable to unravel the 
complex signalling pathways that drive EMT. Blocking or 
inactivating specific pathways may prove useful to restrain 
EMT from occurring and eventually prevent tumorigenesis, 
invasion and migration of cancer cells. 

Drug resistance and therapeutic targeting in 
EMT

EMT is well-studied in that the process itself, in the presence 
of CSCs, not only show resistance to apoptotic stimuli, 
but also contribute to drug resistance (35,67-69). EMT-
induced CSCs that are mediated by the FGFR signalling 
pathway activation are more resistant to drugs (70).  
Gene mutations, abnormal cell cycle regulation and DNA 
repair, and long-term drug administration induce multi-
drug resistance (MDR) and cause tumour cells to exhibit 
EMT-associated phenotypic changes in cellular morphology 
and also enrich the CD44+/CD24− stem cell population  
(71-73). A breast cancer cell line, MDA-MB-231, and 
advanced hepatocellular carcinoma cells (HCCs) were 
shown to have resistance towards epirubicin and sorafenib 
respectively after long term exposure (71,74).

Evidence show that over-expression of GNA13 
contributes to drug resistance in head and neck squamous 
cell carcinoma (HNSCC). To overcome this, inhibition 
of GNA13-induced signalling effectively alleviated 



Stem Cell Investigation, 2019 Page 5 of 8

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2019;6:25 | http://dx.doi.org/10.21037/sci.2019.08.08

drug resistance (75). Luo et al. (in 2018) reported that 
upregulation of 14,15-epoxyeicosatrienoic acid (14,15-EET) 
induces EMT in breast cancer cells and confer cisplatin 
resistance. In contrast, inhibition of 14,15-EET may restore 
cisplatin sensitivity (76). Lee et al. (in 2018) discovered that 
combining HNHA (histone deacetylase) and lenvatinib in 
treating patient-derived thyroid cancer cells has a significant 
effect by blocking the FGFR signalling pathway, and thus 
inhibit EMT (70). Some examples of tumour-specific 
targeted therapeutic regimens are itemised in Table 1.

Conclusions

In summary, EMP has cemented its pivotal role in cancer 
progression. This review summarised the association 
between CSCs and EMT, signalling pathways that drive 
EMT, potential biomarkers of EMT, drug resistance and 
possible targeting therapeutic treatment in various cancers. 
Much effort has been made by researchers to obtain a more 
in-depth understanding of the mechanism of EMT and 
MET, as well as their association with CSCs. Future work 
could be focused on elucidating different biomarkers for 
early prognosis of cancer; silencing signalling pathways 
that drive EMT and possibly prevent cancer metastasis; 
and evoke further understanding of miRNAs as potential 
targeted therapy to overcome chemo-resistance in various 
cancers. 
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