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Introduction

Bone marrow, the first source of mesenchymal stem cells 
(MSCs) described in adult humans, is the most commonly 
used in tissue engineering. However, availability of 
human marrow, invasiveness of its collection and the 
immunogenicity of cells after differentiation make its use 
very controversial. Since 2004, focus was on a new source 
of MSCs, the Wharton’s jelly (WJ) of the human umbilical 

cord. Several studies showed better proliferation of WJ-
derived MSCs in comparison with bone marrow-derived 
MSCs. Diverse extracellular matrix types, including 
fibronectin and type I collagen, were used in order to 
improve MSCs adhesion and differentiation in vitro. 
Development of other matrix types, such as the multilayer 
polyelectrolyte films, is likely to improve proliferation 
and differentiation of MSCs. Moreover, less clinical risks 
are expected with multilayers based on biocompatible 
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natural polyanion polymers (e.g., hyaluronic acid, HA) and 
polycation polymers (e.g., chitosan, CHI). Layer by layer 
deposition of polyelectrolytes is a versatile technique which 
is beginning to be explored as smart coating for tissue 
engineering application (1). In the vascular regenerative 
field, this approach is often employed to promote vascular 
cell adhesion (2,3), to differentiate stem cells into vascular 
cells (4,5) to inhibit thrombus formation and in vitro 
smooth muscle cell dedifferentiation (2,6), and to embed 
bioactive molecules in the film architecture to design drug 
delivery material (7). The most studied film from synthetic 
polyelectrolytes, such as poly-(styrene sulfonate) and poly-
(allylamine hydrochloride), are relatively stiff and thus 
favour cell adhesion and proliferation (8,9). However, they 
are not approved by the US and European health authorities 
due their potential inflammatory risks in clinical use (6). 
Designing polyelectrolyte multilayer (PEM) films using 
natural polyelectrolytes (polysaccharides or proteins) is then 
of great interest for medical applications. PEMs made from 
Chitosan and Hyaluronic Acid are highly hydrated and 
often behave as gel-like with a weak stiffness (1,9-12). They 
have been described as poorly adhesive for chondrosarcoma 
and osteoblastic cell line (13,14) but enabled good human 
fibroblasts and stem cells adhesion and proliferation (15) 
through specific HA-receptor (i.e., CD44) (11).

According to the International Society for Cellular 
Therapy, the minimal features to define MSCs are 
their growth pattern in vitro (plastic-adherent cells), the 
specific surface antigen expression (CD73, CD90 and 
CD105, in the absence of lineage commitment markers 
such as CD14, CD19, CD34, CD45 and HLA-DR) 
and multilineage potential (ability to differentiate into 
osteoblasts, adipocytes and chondroblasts in vitro) (16). 
These unique characteristics of MSCs are advantageous in 
terms of therapeutic applications (17-19). The main source 
for MSCs is the bone marrow but recently perinatal tissues, 
like the umbilical WJ, have been recognized as an excellent 
source to isolate MSCs. WJ can be easily obtained and WJ-
MSCs are more primitive MSCs than those isolated from 
adult tissues and do not express the major histocompatibility 
complex (MHC) class II (HLA-DR) antigens (20). Different 
studies showed that WJ-MSCs were still viable and were 
not rejected four months after transplantation as xenografts 
without immune suppression treatment, suggesting that 
they are a potential cell source for transplantation (16,21). 

The objective of this work was to evaluate the 
biocompatibility of CHI/HA PEMs for WJ-MSCs. We 
showed that CHI/HA films promote WJ-MSCs adhesion 

and proliferation. WJ-MSCs expressed MSCs markers and 
showed fibroblastic-like morphology. Our findings suggest 
that CHI/HA films could be used in tissue engineering 
approaches.

Methods

Polyelectrolytes multilayer films

Hyaluronic acid solution (0.2 mg/mL in NaCl 0.15 M) and 
chitosan solution (0.2 mg/mL in NaCl 0.15 M/HCl 2 mM) 
were used to build the polyelectrolyte multilayers. Reagents 
were obtained from commercial sources and used without 
any further purification. Chitosan low molecular weight 
and hyaluronan (HA, MW =200 kDa) were obtained from 
Sigma Aldrich (Germany).

Each experiment was preceded by a cleaning step of the 
cover glasses as follow: 15 min with sodium dodecyl sulfate 
1% (Sigma Aldrich, Germany) at 100 ℃, extensive ultrapure 
water rinse, 15 min at 100 ℃ with 10−1 M HCl and finally 
cover glasses were thoroughly rinsed with ultrapure water. 
Coverslips were incubated in CHI solution for 5 min, 
thoroughly washed in NaCl (0.5 M) and then incubated 
in HA solution for 5 min (CHI-HA)10 films were built up 
after 20 alternate depositions of polycation and polyanion 
layers. The type I collagen (100 μg/mL from BD) was 
used as positive control for cellular adhesion. The collagen 
solution was added on the coverslips and incubated for  
1 hour at room temperature. Then, the solution was 
carefully aspirated and glasses surface was rinsed 3 times 
with serum-free α-MEM.

Stem cell isolation and culture

This study was approved by the ethical committee of 
Al Hanan Hospital-Tripoli, Lebanon. Twenty five fresh 
human umbilical cords were obtained after full-term birth. 
Umbilical cord vessels were removed manually from cord 
segments, and the exposed WJ was cut into very small 
pieces or explants which were cultured in α-MEM (Sigma 
Aldrich,) supplemented with 10% decomplemented fetal 
bovine serum (FBS), 2 mM L-glutamine, 100 IU/mL 
Penicillin/streptomycin and 2.5 mg/mL Fungizon® (Sigma 
Aldrich,) at 37 ℃ and in 5% CO2. After migration of WJ-
MSCs from the explants and their adhesion to the culture 
dish matrix, explants were removed and cell culture was 
maintained with a medium change every other day until 
their characterization after the 3rd passage (P3).
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Characterization of WJ-MSCs by flow cytometry

WJ-MSCs were characterized at 3rd passage by flow 
cytometry (FACSCalibur; BD Bioscience) through the 
expression of MSC’s markers cluster of differentiation, 
CD73 (Ecto-5 ′-nucleotidase) ,  CD90 (Thymocyte 
differentiation antigen-1) and CD105 (Endoglin), 
hematopoietic markers CD34 and CD45 (Leukocyte 
common antigen, Ly-5); using mouse anti-human CD45-
(HI30) fluorescein isothiocyanate FITC-conjugated 
antibody (BD Bioscience), phycoerythrin PE-conjugated 
mouse anti-human CD34-(581), CD73-(AD2), CD90-
(5E10) and CD105-(5N6) antibodies (BD Pharmingen, 
France) and appropriate isotype controls (mouse IgG1-PE, 
IgG1-FITC and IgG1-HLA-DR (BD Pharmingen, France). 
Briefly, adherent WJ- and BM-MSCs were detached using 
trypsin/ethylenediaminetetraacetic acid (EDTA) and 
incubated for 1 hour at room temperature with appropriate 
conjugated antibodies. At least 10,000 events were acquired 
on BD FACS Calibur® flow cytometer, and the results were 
analyzed using WinMDI v2.8 software.

Evaluation of WJ-MSCs adherence on CHI/HA films 

WJ-MSCs adherence on (CHI/HA)10 films and type 
I collagen substrates was determined by Crystal violet  
0.1 M (Sigma Aldrich, Germany), a dye that interacts with 
intracellular proteins. At 4th passage and after non-adherent 
cells were discarded by PBS washes and the adherent cells 
were stained with 150 µL of crystal violet for 15 min at 37 ℃.  
After extraction of the dye in SDS/PBS (1%), extent of cell 
adhesion was quantified by measuring the optical density 
of the eluted crystal violet at 570 nm by a fluorescence 
spectrophotometer (Varioskan Flash, Thermo scientific). The 
eluted crystal violet of pre-permeabilized cells with Triton 
(X100)/PBS (0.1%) was used as a negative control (22).

WJ-MSCs seeded on (CHI/HA)10 films were incubated 
with DAPI (0.4%) (Sigma Aldrich, Germany) for 5 min 
at room temperature. Different fields were observed by 
fluorescence microscopy (493 nm, Zeiss microscopy, 
Japan) and then visual nuclei counting was compared in 
photographs.

Evaluation of CHI/HA films integrity

F-actin cytoskeleton was labelled using Phalloidin® coupled 
with Alexa® 488 (Sigma Aldrich, Germany). After 2 weeks 
of culture, WJ-MSCs were fixed with 4% paraformaldehyde 
for 15 min, permeabilized with PBS/Triton X-100 (0.1%) 

for 15 min and blocked with PBS/BSA (1%). Cells were 
then incubated for 45 min at 37 ℃ with Phalloidin® (1/100). 
After two washes with PBS, nuclei were counterstained 
using DAPI for 5 min at room temperature. The labeled 
cells were mounted on slides to be observed by fluorescence 
microscopy (Zeiss microscopy, ×20 magnification) using the 
(493Ex/538Em) spectral line. 

WJ-MSCs were fixed in 2.5% glutaraldehyde (Sigma 
Aldrich, Germany) followed by two washing steps with PBS. 
Then, they are dehydrated by successive passages in alcohol 
solutions of increasing concentration: (50%, 70%, 95% 
and 100%; 10 minutes for each concentration). Cells are 
dried with HMDS (Hexamethyldisilazane, Sigma Aldrich, 
Germany) and samples are plated with gold palladium in 
a cathodic evaporator JEOL JFC-1100 ION SPUTTER  
(8 mA and 1.2 kV) for observation. After drying, the 
specimens were directly put on a carbon pad of a SEM-
holder. Scanning Electron Microscopy (SEM) was performed 
with a JEOL Phillips microscope (JEOL 5400 LV).

Statistical analysis

Data are presented as mean ± SEM for each condition. 
Each experiment was repeated independently three times 
(n=3). Pairwise comparison was performed using one-factor 
ANOVA with Fisher correction (Statview IVs, Abacus 
Concepts Inc., Berkley, CA). Differences were considered 
significant if P<0.05.

Results

Characterization of WJ-MSCs by flow cytometry

Results are representative of those obtained using cells from 
umbilical cords of three distinct donors. Flow cytometry 
data showed that 99% of WJ-MSCs were positive for both 
CD73 and CD90 expression; and 98% of these cells were 
positive for CD105 expression. WJ-MSCs displayed a 
homogeneous fibroblast-like phenotype with no expression 
of CD34 (5%), CD45 (1%) (hematopoietic lineage markers) 
and HLA-DR (MHC-class II) (1%) (Figure 1). Because 
WJ-MSCs expressed MSCs markers and did not express 
hematopoietic markers, they may be all considered of 
mesenchymal origin.

Evaluation of WJ-MSCs adherence on CHI/HA films

Staining cells with crystal violet was performed to quantify 
adherent cells after 2 weeks of culture. For (CHI/HA)10 
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Figure 1 Characterization of mesenchymal stem cells (MSCs). MSCs isolated from Wharton’s jelly of Human Umbilical Cords were 
characterized by flow cytometry. The gray histograms represent test samples. Inset value denotes the percentage of the positive population. 
MSCs were positive for cluster of differentiation 90 (CD90), CD105, and CD73; and were negative for CD34, HLA-DR and CD45.
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we got relatively close and better absorbance values than 
for collagen I (Figure 2), indicating that the cells were well 
adhered on (CHI/HA)10. The numeration of nuclei showed 
an important cell adhesion on (CHI/HA)10 compared to 
the positive control: collagen I (Figure 3). These results 
confirmed those obtained with dye crystal violet.

Evaluation of CHI/HA films integrity

The immunostaining of WJ-MSCs seeded on collagen I and 
(CHI/HA)10 showed spread actin microfilament formation 
and a fibroblast-like morphology. After two weeks, the cells 
reach their confluence on these polyelectrolyte multilayer 
films compared to the positive control cells seeded on 
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Figure 2 Cell adherence, Wharton’s jelly (WJ) derived 
mesenchymal stem cells (MSCs) adherence was determined by 
Crystal violet after 2 weeks of culture on Chitosan/hyaluronic acid 
(CHI/HA) and collagen substrates. The extent of cell adhesion was 
quantified by measuring the optical density of the eluted crystal 
violet at 570 nm. Triton treated cells then stained with Crystal 
violet were used as negative control. Results are expressed ± SEM, 
n=3. *, Triton versus CHI/HA; #, Triton versus Collagen, P<0.01.

Figure 3 Cell adherence, Wharton’s jelly (WJ) derived 
mesenchymal stem cells (MSCs) adherence was determined by 
counting the nuclei number after 2 weeks of culture on CHI/HA 
and collagen substrates. Results are expressed ± SEM, n=3.

Figure 4 SEM, Photos of Wharton’s jelly derived mesenchymal 
stem cells (WJ-MSCs) two weeks after seeding on Chitosan/
hyaluronic acid (CHI/HA) and collagen by Scanning Electron 
Microscopy (JEOL Phillips Microscope, Objective ×150). SEM, 
Scanning Electron Microscopy.
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collagen I matrix (Figure 4). Photos obtained with SEM 
showed that cells grown on (CHI/HA)10 exhibit fibroblast-
like morphology characteristic of MSCs and identical to that 
of the control side (Figure 5). These observations confirmed 
cytoskeleton staining results. So on CHI/HA films, WJ-
MSCs could adhere and proliferate in a monolayer aspect 
conserving the fibroblast-like morphology.

Discussion

Cell scaffolds made up of natural polysaccharides have 
attracted significant attention because of their various 
biocompatibilities and specific biological functions based 
on their chemical structures (23,24). Chitosan obtained 
by the deacetylation of chitin, has been widely used solely 
or combined with other polysaccharides, because it is a 
basic polymer rarely found in natural polysaccharides 
and is soluble in weak acid, which allows for easier 
handling (25). Cell scaffolds of CHI composited with 
glycosaminoglycans (GAGs), one of the major components 
of the cartilage extracellular matrix (ECM), have been 
developed for cartilage tissue engineering (26,27). 
Cultures of chondrocytes on composite scaffolds made of 
chondroitin sulfate C (CS), dermatan sulfate, and CHI, 
mimicking the ECM of natural cartilage, were found to 
maintain chondrocyte differentiation while suppressing de-
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differentiation and hypertrophy (23). Composite scaffolds 
made up of GAGs and CHI have also been used for bone 
tissue engineering because GAGs modulate the activities of 
several cytokines and growth factors that are important for 
bone regeneration (28). 

Since hyaluronic acid, a non-sulfonated GAG in the 
ECM, regulates cancer stemness and tumor progression (29),  
HYA-based hydrogels have been used in the reconstitution 
of tumor microenvironments in vitro (30). Furthermore, 
a scaffold made of alginic acid (ALG) and CHI enabled 
feeder-free self-renewal of human embryonic stem cells (26).

Therefore, cell scaffolds made of polysaccharides have 
potential not only as materials for implantable scaffolds, but 
also tools for cancer research and the ex vivo expansion of 
stem cells for regenerative medicine.

Different studies showed that MSCs behavior is highly 
dependent on physicochemical properties of the culture 
substrate (matrix, scaffold… c’est mieux?). Literature has 
shown that collagen coating allowed an effective MSCs 
adhesion but it’s essential for platelet aggregation and 

activation (31). Moreover, fibronectin coated surfaces 
had enhancing effect on cell adhesion, however it suffers 
from being hydrolyzed and so there is a need for another 
substrate for clinical use (32).

In this report, we have used (CHI/HA)10 films as 
substrate for WJ-MSCs adhesion and proliferation. Before 
seeding WJ-MSCs on this scaffold, we have examined their 
immune phenotype. No single marker was identified so far 
predictably defining MSC. Traditionally culture expanded 
MSCs are described to be negative for hematopoietic 
markers including CD45 and CD34. On the contrary MSCs 
express CD44, CD73, CD90 and CD105. In addition, 
MSCs are described by the absence of HLA class II (33,34). 
Indeed our cells satisfied this panel.

Cell adherence was evaluated using crystal violet and 
nuclei staining. Results showed a great biocompatibility of 
(CHI/HA)10 for WJ-MSCs that adhere and proliferate for  
2 weeks of culture compared to collagen I.

Actin cytoskeleton was labeled to evaluate cell morphology 
of WJ-MSCs cultured on (CHI/HA)10 and collagen I coatings 
after 2 weeks. The cytoskeleton showed that WJ-MSCs 
cultured on (CHI/HA)10 and collagen I coatings presented 
a typical fibroblast cell shape with well-aligned actin fibers 
that span over the entire cell body. Reorganization of actin 
stress fibers actively participates in cell signal transduction 
and transmits signals from extracellular matrix to nucleus 
to influence gene expression (18,31,35). Photos obtained 
with SEM showed that cells grown on (CHI/HA)10 exhibit 
fibroblast-like morphology characteristic of MSCs and 
identical to that of the control side. These observations 
confirmed cytoskeleton staining results.

These multilayer CHI/HA films have been described as 
poorly adhesive for chondrosarcoma and osteoblastic cell 
line (14) but showed a good human fibroblasts and bone 
marrow mesenchymal stem cells (BM-MSCs) adhesion 
and proliferation (10,15). In this study we have shown that 
formation of PEMs from CHI and HA resulted in surfaces 
that promoted WJ-MSCs adhesion and proliferation.

Conclusions

These promising results showed that WJ-MSCs could 
adhere and proliferate in a monolayer aspect conserving the 
fibroblast-like morphology on CHI/HA multilayer films.
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