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Aging

It is estimated that in the next 20 years, the number of 
individuals in the United States over the age of 65 will 
double, numbering more than 70 million individuals. 
Unfortunately, as we age there is an unavoidable and 
progressive loss of the ability to maintain tissue homeostasis 
under stress and an attrition of functional reserve. As 
a consequence, the incidence of numerous debilitating 
diseases increases nearly exponentially with age, including 
cardiovascular disease, neurodegeneration, diabetes, 
osteoarthritis, and osteoporosis. Over 90% of individuals 
>65 years of age have at least one chronic disease, while 
>70% have at least two. These chronic diseases account for 

75% of our healthcare costs, amounting to approximately $3 
trillion in costs last year alone. Indeed, chronic diseases of 
the elderly are the greatest healthcare burden in the United 
States and seriously impact the quality of life of a large 
segment of the population. Thus, there is a significant need 
to understand mechanisms driving aging and to develop 
novel therapeutics. Given the diverse roles of blood-borne 
EVs in modulating not only the immune response, but also 
angiogenesis and tissue regeneration, they likely play a key 
role in modulating the aging process. This review focuses 
on the role EVs could play in aging, their therapeutic 
application for extending healthspan and their potential for 
use as biomarkers of unhealthy aging.
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Abstract: Aging and the chronic diseases associated with aging place a tremendous burden on our 
healthcare system. As our world population ages dramatically over the next decades, this will only increase. 
Hence, there is a great need to discover fundamental mechanisms of aging to enable development of 
strategies for minimizing the impact of aging on our health and economy. There is general agreement 
that cell autonomous mechanisms contribute to aging. As cells accrue damage over time, they respond to 
it by triggering individual cell fate decisions that ultimately disrupt tissue homeostasis and thus increase 
risk of morbidity. However, there are numerous lines of evidence, including heterochronic parabiosis and 
plasma transfer, indicating that cell non-autonomous mechanisms are critically important for aging as 
well. In addition, senescent cells, which accumulate in tissues with age, can display a senescence-associated 
secretory phenotype (SASP) that contributes to driving aging and loss of tissue homeostasis through a 
non-cell autonomous mechanism(s). Given the diverse roles of blood-borne extracellular vesicles (EVs) in 
modulating not only the immune response, but also angiogenesis and tissue regeneration, they likely play a 
key role in modulating the aging process through cell non-autonomous mechanisms. The fact that senescent 
cells release more EVs and with a different composition suggests they contribute to the adverse effects 
of senescence on aging. In addition, the ability of EVs from functional progenitor cells to promote tissue 
regeneration suggests that stem cell-derived EVs could be used therapeutically to extend healthspan. This 
review focuses on the potential roles of EVs in aging, the potential of EV-based therapeutic applications for 
extending healthspan and the potential for use of circulating EVs as biomarkers of unhealthy aging.
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Mechanisms underlying aging

Aging is a complex process involving a number of different 
pathways with both genetic and environmental components 
(1-5). Aging is thought to arise, in part, as a consequence 
of the accumulation of stochastic molecular and cellular 
damage. The precise nature of the damage responsible 
for aging-related degeneration remains poorly defined, 
but likely consists of mitochondrial dysfunction, elevated 
ROS, telomere attrition, changes in nuclear structure, 
accumulation of genetic mutations, or DNA, protein and 
membrane damage. Biological processes that underlie 
aging phenotypes and are also active at sites of etiology 
of most chronic diseases include: (I) chronic, low-grade, 
“sterile” inflammation; (II) macromolecular and organelle 
dysfunction resulting in changes in level or function of 
proteins, carbohydrates, lipids, mitochondria and DNA; 
(III) stem cell and progenitor cell dysfunction; and  
(IV) increased senescent cell burden. These four processes 
are linked in that interventions targeting one process also 
attenuate the others. For example, oxidative DNA damage 
increases stochastically in cells in different tissues, likely 
driven in part by increased mitochondrial ROS, resulting 
in the induction of cellular senescence. These senescent 
cells accumulate with age at sites of pathogenesis in chronic 
diseases (6,7). Reduction of the senescent cell burden can 
lead to reduced inflammation, decreased macromolecular 
dysfunction, and enhanced function of progenitors (8-10). 
Also, adult stem cells become dysfunctional with evidence 
of senescence with age, likely driven by macromolecular and 
organelle dysfunction (11). These four biological processes 
are also the key components of the seven pillars of aging, 
defined as adaption to stress, epigenetics, inflammation, 
macromolecular damage, metabolism, proteostasis and stem 
cells and regeneration.

Autonomous and non-autonomous mechanisms 
of aging

There is compelling evidence to support the hypothesis 
that the underlying cause of aging is the cell autonomous, 
time-dependent accumulation of stochastic damage to cells, 
organelles and macromolecules. However, it is also clear 
from heterochronic parabiosis (12-17) and serum transfer 
(17,18) studies that cell non-autonomous mechanisms play 
important roles in suppressing or driving degenerative 
changes that arise as the consequence of spontaneous, 
stochastic damage. For example, using heterochronic 

parabiosis, it was demonstrated that factors in young blood 
rejuvenate certain cell types and tissues in old mice (12-17).  
These anti-geronic factors in young serum include GDF-11  
and oxytocin (19). Treatment of mice with rGDF-11  
(15,16,20), similar to heterochronic parabiosis, has 
rejuvenating effects on skeletal muscle, heart and brain, 
although these results are still controversial (21,22). 
Furthermore, factors in umbilical cord, but not adult, 
plasma function as synaptic plasticity-promoting proteins 
with TIMP2 demonstrated to increase hippocampal-
dependent cognition (23). Conversely, factors in old blood 
can drive aging of certain cell types and tissues in young 
mice. These blood-borne pro-geronic factors include the 
chemokine CCL-11 (24) and β-2 microglobulin (25). In 
addition to these identified geronic factors, it is likely there 
are other circulating factors that also play key, cell non-
autonomous roles in aging. Indeed, it is likely a combination 
of loss of anti-geronic factors and an increase in pro-geronic 
factors that drives aging. Given that almost all cell types 
release EVs, including stem/progenitor cells and senescent 
cells, it is likely that subsets of blood-borne EVs play key 
roles as both anti- and pro-geronic factors.

Cellular senescence

Senescence is a cell fate that involves loss of proliferative 
potential of normally replication-competent cells with 
associated resistance to cell death through apoptosis and 
generally increased metabolic activity. Frequently, senescent 
cells develop a senescence-associated secretory phenotype 
(SASP) characterized by increased release of pro-
inflammatory cytokines and chemokines, tissue-damaging 
proteases, factors that can impact stem and progenitor 
cell function, hemostatic factors, and growth factors (8). 
Markers of senescent cells include increases in expression 
of the cell cycle regulators, p16INK4A and p21Cip1, of 
SASP factors (e.g., IL-6, IL-8, monocyte chemoattractant 
protein-1, plasminogen-activated inhibitor-1, and many 
others), increased senescence-associated β-galactosidase 
(SA-βgal) activity, senescent-associated distension of 
satellites (SADS), and telomere-associated DNA damage 
foci (TAFs), among others. Senescent cells that express 
the SASP thus can have substantial pathologic effects. 
In support of an important role for senescence in aging, 
selective killing of p16INK4a-positive senescent cells 
extended healthspan in transgenic mouse models (INK-
ATTAC and p16-3MR mice) of accelerated aging  
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(26-30). Importantly, clearing senescent cells from aged 
INK-ATTAC mice improved age-related changes in 
metabolic function (9). Subsequently, it was demonstrated 
that chronic clearance of p16INK4a-positive cells in 
adult mice extends the median lifespan of naturally aged 
mice (27). Clearance of senescent cells in versions of this 
genetic model (INK-ATTAC and 3MR mice) or treating 
mice with novel senolytics extended healthspan (31,32), 
restored vascular reactivity (33), stabilized atherosclerotic 
plaques (34), improved pulmonary function (35), alleviated  
osteoarthritis (28), improved fatty liver disease (36) and 
improved lung function in a pulmonary fibrosis model (35).  
Conversely, injecting senescent cells is able to drive age-
related diseases such as osteoarthritis (37). Thus, the 
increase in cellular senescence that occurs with aging 
appears to play a major role in driving life-limiting, age-
related diseases (8,29,30,38-40). As discussed below, 
senescent cells release more EVs with a different 
composition, suggesting that EVs should be considered part 
of the SASP, important for conferring the adverse effects of 
senescent cells on aging.

Stem cells and aging

A characteristic of aging is the loss of regenerative capacity, 
leading to an impaired ability to respond to stress and 
therefore increased morbidity and mortality. This has led 
to the hypothesis that aging is caused, in part, by the loss 
of functional adult stem cells necessary for maintaining 
tissue homeostasis. Indeed, mice greater than 2 years of age 
have a significant reduction in the number and proliferative 
capacity of different adult stem cell types. For example, 
there are age-related changes in bone marrow-derived 
mesenchymal stem cells (BM-MSCs) including loss of 
proliferation and differentiation potential and increased 
senescence. Similarly, MSCs derived from the bone 
marrow of patients with Hutchinson-Gilford Progeroid 
Syndrome, a disease of accelerated aging, are defective in 
their ability to differentiate (41). In addition, muscle derived 
stem/progenitor cells (MDSPC) are adversely affected 
in accelerated and natural aged mice, displaying loss of 
proliferation and ability to differentiate in culture (11,42). 
Importantly, this dysfunction was demonstrated to directly 
contribute to age-related degenerative changes since intra-
peritoneal injection of only 106 functional, young MDSPCs 
was sufficient to extend healthspan and lifespan in two 
different mouse models of accelerated aging (11). Only a few 
of the injected, labeled MDSPCs were found in different 

tissues with no evidence of differentiation, suggesting 
that the therapeutic effect of MDSPCs is likely mediated 
by secreted factors that act systemically in a cell non-
autonomous manner. Consistent with this hypothesis, co-
culture of young, functional MDSPCs with old MDSPCs 
in a transwell system resulted in improvement in the ability 
of the old MDSPCs to proliferate and differentiate (11). At 
least part of this activity co-purifies with EVs.

Injection of young, functional BM-MSCs into rats has 
been shown to extend their lifespan. Ubiquitously located 
throughout the body, MSCs can act locally through 
chemotactic-induced migration from the perivascular 
niches in response to stress or injury as well as systemically 
through the secretion of various soluble factors such as 
chemokines, cytokines and extracellular vesicles (EVs). 
Tasked with maintaining the HSC niche through the 
regeneration of an extracellular matrix comprised of 
osteoblasts, adipocytes and endothelial cells (43-45), MSCs 
also maintain tissue homeostasis through modulating HSC 
function. In addition, MSCs are vital in maintaining blood 
vessel integrity through promotion of angiogenesis and 
thus are essential for systemic wound healing and tissue 
regeneration. Lastly, MSCs have a profound capacity to 
modulate the immune system, therefore modulating the 
immune response to stress and injury by regulating the pro-
inflammatory response of macrophages and prohibiting 
lymphocyte proliferation (46). MSCs derived from old mice 
are defective in their ability to differentiate and undergo 
senescence more rapidly in culture.

EVs

EVs are comprised of both microvesicles, released from 
the plasma membrane by shedding, and nanovesicles or 
exosomes, generated by reverse budding of multivesicular 
bodies (MVBs) (47,48). These different types of EVs are 
characterized predominantly by their size, with exosomes 
ranging from 30 to 100 nm and microvesicles usually 
being larger than 100 nm. Although their contents likely 
differ, both small and large EVs are enriched for a subset 
of diverse proteins, lipids, messenger RNAs (mRNAs), 
and non-coding RNAs (ncRNAs), such as miRNAs, 
which are derived from the parental cells. EVs have a 
variety of reported functions and some of their better-
documented activities are associated with some form of 
immune regulation (47,48). EVs from both immune and 
non-immune cells, such as MSCs and endothelial cells, 
contribute to antigen-specific and non-specific immune 
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regulation (47-49). Depending upon the context and vesicle 
type, EVs can stimulate or suppress the immune responses 
to infections with viruses and microbial pathogens as well as 
cancer.

EVs derived from stem cells also have significant ability 
to repair damaged tissue (50). For example, EVs derived 
from marrow or adipose MSCs affect the phenotype and 
induce healing of many different tissue and cell types, 
including liver (51), heart (52), pulmonary epithelial cells 
and kidney (53,54) as well as promote angiogenesis (55,56). 
Consistent with these regenerative capacities of stem 
cell EVs, a recent study demonstrated that implantation 
of healthy hypothalamic stem/progenitor cells into the 
hypothalamus leads to the slowing of ageing (57). Moreover, 
it was demonstrated that the functional hypothalamic stem/
progenitor cells release exosomes into the cerebral spinal 
fluid that likely contribute to slowing aging through transfer 
of miRNAs (57). Conversely, it has been demonstrated 
that senescent cells release more EVs and with a different 
composition (58-60), likely contributing to the SASP. 
Taken together, these results suggest that functional stem/
progenitor cell-derived EVs are able to extend healthspan 
and lifespan whereas senescent cell-derived EVs could 
function as pro-geronic factors.

Circulating, blood-borne vesicles

EVs are found in blood and circulate throughout the body, 
presumably serving as a form of cell-to-cell communication 
at a distance. Given that EVs contain RNA, proteins 
and lipids derived from the cell of origin, components 
of circulating EVs are being used as markers of disease. 
For examples, tumor associated proteins such as EGF-R 
(glioblastoma) (61) or oncogene mRNAs (62) have been 
found in cerebral spinal fluid or blood-derived EVs 
respectively whereas the protein glypican-1 is found in 
circulating EVs from patients with pancreatic cancer (63). 
Also, circulating EVs have important biological activities 
(47,48). Serum-derived EVs from mice bearing tumors were 
able to suppress tumor antigen-specific responses (64-66). 
Similarly, intradermal immunization with a specific antigen 
resulted in the presence of MHC Class II+ EVs in the 
serum able to suppress antigen-specific immune responses 
in a mouse delayed type hypersensitivity (DTH) footpad 
model (67). More recently, it was demonstrated that EVs 
from human serum can promote vascular remodeling and 
prevent muscle damage in a mouse model of acute hind 
limb ischemia (68).

Taken together, these observations strongly suggest that 
EVs play important roles in immune regulation and tissue 
regeneration. More importantly, these results suggest that 
circulating EVs in the blood could contribute to cell non-
autonomous mechanisms of aging. Indeed, given that EVs 
are important for cell-to-cell communication between 
neighboring cells and cells at a distance, transferring not 
only RNA, but also proteins, lipids and metabolites, they 
are well-positioned to play key pro- and anti-geronic roles 
with aging.

EVs as biomarkers of aging

EVs can act as a biomarker, specifying the progression of 
the disease state of the cells in which they originate. For 
example, EVs from the serum of aged rats have been shown 
to have reduced CD63 and increased acetylcholinesterase 
(AChE) levels compared to young controls. Interestingly, 
exercise in the aged animals altered the CC63 and AChE 
levels. The miR-183 cluster, comprised of miR-96, miR-182  
and miR-183, increases with age, at least in EVs derived 
from bone marrow (69). Interestingly, transfection 
of a miRNA-183-5p mimic was shown to reduce cell 
proliferation and increase senescence in bone marrow 
stem cells, suggesting the bone marrow EVs from 
aged animals could suppress osteogenesis. In addition, 
increased levels of proBDNF and BDNF were found 
in circulating L1CAM+ EVs, derived from neuronal 
cells (70). Individuals with higher EV BDNF levels 
had slower walking speeds (70). In prostate cancer 
patients on dietary protein restriction, an increase in 
the levels of leptin receptor in total plasma EVs and, in 
particular, the L1CAM+ EV subset was observed (71).  
There also was a change in the phosphorylation status of the 
insulin receptor signal transducer protein IRS1 in L1CAM+ 
EVs (71). These results suggest that protein restriction 
could improve insulin and leptin sensitivity. In a recent 
study, the levels of circulating EVs in plasma were shown 
to decrease in a cross-sectional and longitudinal study. 
Here it also was demonstrated that plasma EVs from older 
individuals had increased MHC-II expression on monocytes 
and were more readily internalized by B cells (72). This 
uptake of the plasma EVs results in activation of not only B 
cells, but also monocytes (72). Thus circulating EVs in aged 
individuals likely can modulate the immune response.

Summary

Given the observations that heterochronic parabiosis 
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and plasma transfer can slow aging in old animals and 
accelerate aging in young animals, circulating factors act 
as anti and pro-geronic factors to modulate aging. The 
fact that EVs are released by many cell types in vivo and 
play important roles in cell-to-cell communication make 
EVs the perfect candidates for key geronic factors. Indeed, 
blood-borne EVs have been shown to modulate not only 
the immune response, but also promote angiogenesis 
and tissue regeneration. In addition, cellular senescence 
contributes to driving aging through release of soluble 
factors, as demonstrated by the fact clearance of senescent 
cells extends general healthspan. Since senescent cells 
release more EVs than non-senescent cells in culture 
and potentially in vivo, EVs likely are part of the SASP, 
contributing to the age-related pathologies driven by 
cellular senescence. Conversely, the ability of EVs from 
functional progenitor cells to promote tissue regeneration 
suggests that stem cell-derived EVs could be used 
therapeutically to extend healthspan. Taken together, there 
is substantial circumstantial evidence that EVs play key 
roles in aging and that regenerative EVs could be used to 
extend healthy aging. Finally, given the likely role of EVs 
in aging, components of EVs, in particular EV subsets such 
as L1CAM+ EVs, could be developed as biomarkers of 
unhealthy aging.
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