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Retinal degenerative diseases resulting in photoreceptor 
death, such as age-related macular degeneration (AMD) 
and retinitis pigmentosa (RP) lead to incurable vision loss 
in millions of patients worldwide. When photoreceptors 
are lost, the resulting visual deficit is permanent. Currently, 
there are no effective therapies for these diseases except 
to delay degeneration in early disease stages. A potential 
approach in regaining vision for more advanced disease is 
to replace the degenerated photoreceptors. Particularly, 
this is a viable strategy for AMD as it has been shown that 
ganglion cells can survive in a degenerate retina even when 
there is severe underlying photoreceptor loss (1). Finding a 
suitable source of transplantable cells to replace the dying 
host tissue is the main challenge.

There  are  two d i f ferent  s t ra teg ies  to  rep lace 
photoreceptors: (I) transplantation of retinal progenitor 
sheets (fetal retina or stem-cell derived) (2-5). Fetal 
retinal sheet transplants have resulted in long-term visual 
improvements in different animal models of retinal 
degeneration (4,6-8) and in patients (9), and have shown to 
integrate and synaptically connect with a degenerated retina 
(6,8). (II) The second approach is injection of dissociated 
photoreceptor precursors (10-15). Studies have shown that 
a small percentage of subretinally injected photoreceptor 
precursor cells can integrate in the photoreceptors layer, 
form synaptic terminals (10,15) and outer segments 
(14,15). However, this requires the presence of an outer 
nuclear layer in the host retina; transplanted photoreceptor 

progenitors do not develop proper morphology in recipients 
with severe loss of photoreceptors (10,11,16). Therefore, 
most studies have been performed in transgenic mutants 
where the photoreceptors remain viable although non-
functional, such as transgenic knockouts of rhodopsin, CRX 
or rod transducin (10,11,15). In such very specific models, 
several groups have shown some vision improvement with 
transplantation of photoreceptor precursors (11,13,15); 
however most experiments have been short-term (mostly 6, 
up to 12 weeks). Even when transplanted within the same 
species, dissociated photoreceptor precursor transplants 
disappear over time due to a slow rejection process (12). 
This is not the case with fetal retinal sheet transplants (2).

The study of Zhu et al. injected dissociated retinal cells 
derived from human pluripotent stem cells which has been 
done previously in few studies (11,17-20). Testing of human 
cells in animals requires immunosuppression. Although 
the retina has a relative immune privilege (21) this does 
not extend to xenografts. In spite of the so-called “immune 
privilege” of the eye, xenografts require immunosuppression 
to survive (21,22). In addition, retinal degeneration causes 
activation of microglia and macrophages. Therefore, this 
study of Zhu et al. developed an immunodeficient mouse 
(lacking IL2r-gamma) for transplantation of hESC-derived 
photoreceptor precursors (23), in a cross with retinal 
degenerate Crx −/− mice, a model of Leber’s congenital 
amaurosis (LCA). Crx −/− mice have non-functional 
photoreceptors which degenerate very slowly over a long 
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time frame. This means there was still an outer nuclear 
layer present at the time of transplantation in their study 
which is different from severe retinal degeneration.

The title of the Zhu et al. paper is misleading: the 
animals were actually not immunosuppressed, but they 
were genetically manipulated to be immunodeficient 
and did not receive immunosuppressive drugs. The side 
effects of immunosuppressive drugs are difficult to balance 
against any visual benefits, in contrast to the benefits of 
immunosuppression for organ replacement (24).

The donor tissue in the Zhu et al. study contained mixed 
hESC-derived retinal cells (3 months of differentiation) 
not purified photoreceptor precursors (25). The cells 
were labeled with a lentivirus expressing enhanced green 
fluorescent protein (EGFP) under an ubiquitous promoter 
that labels all cells (11), This virus labeled 60–70% of all 
donor cells. GFP label was restricted to cells of human 
origin as confirmed by co-staining with human nuclear or 
cytoplasmic markers.

In the first part of the study, the cells were injected 
into the subretinal space of mice with a normal retina, 
either wildtype or IL2r-gamma knockout, without 
immunosuppression. Very few cells integrated into the 
outer nuclear layer of normal mice, whereas robust 
integration was observed in IL2r-gamma knockout mice. 
This integration represented 2.5–4% of the injected 
cells. In the wildtype retina, transplantation caused an 
upregulation of lymphocytes, T-cells, dendritic cells and 
activation of microglia/macrophages. In contrast, host 
retinas of IL2r-gamma knockout mice contained more 
CD3+ cells, but CD4 and CD8a expression (T-cell marker) 
was almost completely eliminated. Also absent were CD49b 
natural killer cells, and CD11c dendritic cells. CD68 and 
F4/80 (marker for activated microglia/macrophages were 
significantly reduced. Thus, knockout of IL2r-gamma 
caused a suppression of the normally occurring immune 
response. GFP-cells that were integrated in the host outer 
nuclear layer expressed mature photoreceptor and synaptic 
markers. To sum up the first part: due to the reduced 
immune response, transplanted hESC-derived retinal cells 
survived and integrated better in the IL2r-gamma mice than 
in mice with normal immune system.

In the second part of the study, hESC-derived retinal 
cells were transplanted to the Crx −/− model of LCA, either 
with normal immune system or IL2r-gamma knockouts. 
At 3 months, few cells survived in Crx −/− mice with a 
normal immune system, but there was significantly higher 
integration in IL2r-gamma knockout animals. However, 

only about 20% of the integration rate (4,000 vs. 20,000 
cells) was seen compared with IL2r-gamma knockout mice 
with normal retina. Transplanted cells could still be detected 
at 9 months post-transplantation which is a significantly 
longer survival time tested than in previous studies with 
non-immunodeficient animals.

Improvement of vision in transplanted animals was done 
by testing for pupillary responses. This test consists of 
illuminating the transplanted eye, and recording pupillary 
constriction from the non-transplanted eye. This test has 
been used in previous studies of photoreceptor precursor 
transplants (10,16). At 3 and 9 months post-transplant, a 
partial restoration of pupillary responses was seen in Crx 
−/− mice that were also IL2r-gamma knockouts, but not 
in transplanted Crx −/− with an intact immune system. 
However, the intensity of the pupillary reflex does not 
correlate with the number of photorecptors cells (26).

Transplanted Crx −/− mice with IL2r-gamma knockout 
also had very small detectable B-waves in ERG recordings 
that were absent in sham controls. However, the responses 
were very small and close to the noise level, with a small 
number of animals tested.

Another indication of visual function restoration was the 
demonstration that the immediate early genes c-fos and Arc 
were upregulated in visual brain centers after intense light 
exposure, in transplanted Crx −/−, IL2r-gamma knockout 
mice. The authors did not show a comparative panel of mice 
with normal retina. Dark-adapted anesthetized mice were 
exposed for 2 h with a light intensity of 10,000 lux, followed 
by sacrifice after 2 h. However, this light exposure was 
much more intense than in other publications investigating 
the upregulation of c-fos expression by light exposure. E.g., 
Barnard et al. (27) exposed mice to 15 min of fluorescent 
white light of 33 µW/cm2, which would approximately 
correspond to 225 lux. It would have been interesting if 
they had seen an effect of the transplant under physiological 
light intensity conditions.

Recently, several laboratories have demonstrated that 
recipient photoreceptors incorporate GFP label from 
transplanted photoreceptor precursor cells that were 
injected into the subretinal space. This means that GFP 
label alone is insufficient to tell whether donor cells really 
integrated into the host retina (28-30). However, Zhu et al. 
showed that GFP-labeled cells stain for human specific 
markers and do not co-express a mouse-specific MHC class 
I marker which clearly determined that they were all of 
human origin. Thus, there was no cytoplasmic transfer in 
this study.
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In summary, the study of Zhu et al. shows that using an 
immunodeficient mouse model significantly improves the 
integration and survival of transplanted retinal cells. One 
word of caution: Zhu et al. argued that immunosuppression 
may have enhanced transplant integration in the study of 
Shirai et al. (5), but this study already used cyclosporine A 
as immunosuppressant. The study by Zhu et al. confirms 
that immunodeficient animal models are better for 
transplant survival and integration than models that need 
immunosuppression by drugs because of the side effects of 
immunosuppressant drugs (24). It is unclear however, how 
this would translate to future clinical trials. In a previous 
clinical trial with fetal retina-RPE sheet transplants to 
patients with RP and AMD, no immunosuppression was 
used, and transplants survived for many years (9).
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