
© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2017;4:21sci.amegroups.com

Page 1 of 7

Introduction

Liposarcomas (LPS) are malignant tumors originating 
from mesenchymal cells (1-5). Although LPS can occur in 
almost anywhere in the body, over half develop in the thigh, 
and up to one-third involve the abdominal cavity (1-5). 
According to the WHO Classification of Soft Tissue and of 
Bone published in 2013, LPS can be divided into four types: 
well-differentiated liposarcoma (WDLPS), dedifferentiated 
liposarcoma (DDLSP), myxoid/round cell liposarcoma 
(MLPS), and pleomorphic liposarcoma (PLPS) (2-8). 

The main feature of WDLPS is the excessive proliferation 

of adipocytes, while DDLPS includes both, a fusiform-cell-
rich dedifferentiated portion and an adipocyte-rich well 
differentiated portion (1,3,5). WDLPS and DDLPS have 
both shown amplification of 12q13-15, which includes the 
MDM2 gene, but they demostrate different pathological 
features (9-13). In addition to surgical treatment, the most 
common types, WDLPS and DDLPS, show obvious 
resistance to conventional radiotherapy (RT) and cytotoxic 
chemotherapy (CT) (1,5). MLPS is another common 
subtype of LPS, with a 5-year overall survival rate of 90%, 
compared with 50% in patient with round cell LPS (14-17). 
Most MLPSs show the translocations t(12;22)(q13;q12) and 
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t(12;16)(q13;p11.2), which lead to fusion of EWS-CHOP 
and FUS-CHOP (14,18-20) respectively. 

There different histopathological and genetic features 
mean that LPS variants exhibit different aggressive potentials, 
reflecting their morphologic diversity. DDLPS, high-grade 
MLPS, and PLPS have a high propensity to metastasize, 
while ALT/WDLPS does not metastasize without 
dedifferentiation, and MLPS exhibits indolent clinical 
behavior and a lower metastatic potential (Table 1) (3,21). 

Treatment options of LPS patients involve surgery, CT, 
and RT. The goal of surgery, as the standard treatment for 
localized tumors, is to achieve complete tumor resection with 
negative margins. RT and CT, which can be administered 
pre- and/or postoperatively as a part of multimodal strategy 
for the management of localized tumors and they have 
shown controversial results (22). The standard treatment 
of metastatic disease is cytotoxic chemotherapy but it 
shows limited success. LPS sensitivity to CT seems to be 
correlated with the histologic subtype, and MLPS has a 
higher sensitivity to cytotoxic CT than other LPS subtypes 
(3). Histology and the primary site are the independent 
prognostic factors associated with survival in LPS patients 
(23). Novel and more effective systemic therapies are needed 
to meet the needs of LPS patients. Targeted therapy aims 
to exploit specific biologic features of the tumor in order to 
eradicate it. However, its rarity and the diverse molecular 
and genetic characteristics of each subtype are hindering 
the development of new targeted therapies (3,5,11,15,21). 
However, there have been several translational studies and 
trials in different subtypes of LPS (11,16,20,24-27).

12q13-15 amplicon and genetic amplification

Gene amplification in WD/DDLPS patients with 
chromosome 12q13-15 amplification may be a key event in 
the pathogenesis of LPS (28). Such amplified genes can be 
investigated by molecular biological methods and thus have 
the potential to act as a biomarker and target (29-31). 

The MDM2 (also known as HDM2) gene is located at 
chromosome 12q15 and is amplified in most WD/DDLPS 
(Table 1) (32-34). Amplification of MDM2 inhibits the 
activity of p53, which leads to its loss of function as a tumor 
suppressor (35-37). Similarly, the cyclin dependent kinase-4 
gene (CDK4) is also amplified in most WDLPS and DDLPS 
cases (Table 1) (29,32,38). At the molecular level, CDK4 
inactivates retinoblastoma (Rb) protein and promotes 
cell-cycle transition from G1 phase to S phase (39).  
Similar to MDM2  and CDK4 ,  the YEATS domain 

containing 4 gene (YEATS4) is also located on 12q13-q15 
(Table 1). As a transcription factor participating in p53 
regulation, YEATS4 has also shown promising potential in 
target therapy (17,29,32).

MDM2 inhibitors

Nutlins is the first potent and specific MDM2 inhibitor (40). 
It replaces p53 from MDM2 with an inhibitory concentration 
50 of 100–300 nm. Nutlin-3a has been reported to influence 
the Rb pathway through activation of the transcription factor 
E2F1, cause apoptosis in p53-null tumor cells (41). Nutlin-3 
thus demonstrates exciting prospects as a therapeutic target. 
Several other MDM2 inhibitors, such as AT-219 and Ascenta 
are also currently being developed (42).

Receptor tyrosine kinase inhibitors

A recent study showed that several receptors, including 
MET, IGFR, AXL, and EGFR were overexpressed in WD/
DDLPS (Table 1). All these receptors may act as targets, 
and have already available small-molecule inhibitors (43). 
For instance, the oral VEGFR2 tyrosine kinase inhibitor 
apatinib had showed significant effect in advanced round 
cell LPS (44). The PDGFR beta-mediated pathway also 
plays a role in the progression of canine LPS, and may 
thus represent a promising target for adjuvant cancer 
therapies (45). Aurora kinases have recently been shown 
to be deregulated in human tumors, making them an 
attractive target for cancer therapy (46). Aurora kinase A, 
was also overexpressed in LPS and MLN8237 has proven 
to a selective and potent inhibitor of Aurora A, in a dose-
dependent manner, suggesting that doses effectively and 
specifically targeted at Aurora A may be effective in tumor 
growth suppression (46). 

FUS-DDIT3/EWSR1-DDIT3 fusion

The characteristics of MLPSs include frequent local 
recurrence and metastasis (16,47-49). MLPS tumors are also 
characterized by specific translocations of t(12;16) or t(12;22), 
resulting in fusion of FUS-DDIT3 or EWSR1-DDIT3, 
respectively (Table 1) (20,49,50). Three EWSR1/DDIT3 
and nine FUS/DDIT3 fusion transcripts have been detected 
to date (1,14,17,19,20,49,50). Regarding the biological 
role of these fusions in LPS, Aman et al. demonstrated that 
FUS-DDIT3 protein expression was inversely correlated 
with the expression of cell proliferation-associated  
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molecules (20). Suggesting that FUS-DDIT3 is the 
regulatory site involved in the development of MLPSs at the 
transcription and expression levels, these fusion oncogenes 
might be potentially powerful therapeutic targets, and 
detailed investigations are needed to develop them as novel 
treatment methods for LPS. Another specific TLS-CHOP 
fusion, caused by the translocation of t(12;16), presents in 
almost all the myxoid LPS (14). The TLS-CHOP fusion 
protein has three common types: type I (also known as type 
7-2), type II (type 5-2), and type III (type 8-2) and p53 status 
has been reported to show an association with type II fusion 
in MLPS (14).

PI3K/Akt signaling pathway

PI3K-Akt pathway is a signal transduction pathway, which 
can promote the growth and survival of extracellular 
signals. This signaling pathway is highly regulated through 
a variety of mechanisms, and often interacts with other 
signaling pathways (24). Disruption of the PI3K-Akt 
pathway regulation can result in an increased signaling 
activity, which is linked to a range of diseases, such as type 
II diabetes and cancer (24). 

In MLPSs, p110α catalytic subunit mutations of PI3K 
gene have been frequently detected and are associated with 
a poor prognosis (51). Other frequently mutated genes 
include PIK3CA (18% of MLPSs), TP53 (17% of PLPS), 
and NF1 (8% of PLPS) (51). PIK3CA mutations are also 
associated with a poor clinical prognosis and Akt activation 
in MLPSs (51). These results indicate that Akt pathway 
plays a potential role in MLPS, supporting the need for 
further studies of this histologic subtype, including the 
effects of PI3K inhibitors (Table 1) (24,51). 

Demicco et al. also studied the PI3K-Akt pathway in 44 
cases of round cell and myxoid LPS (26). Compared with 
purely mucinous tumors, tumors with round cell alterations, 
frequently have higher levels of IGF1R or PIK3CA 
activation. Moreover, PI3K-Akt pathway activation in round 
cell LPS is verified by the increase in p4EBP1 than that of 
myxoid LPS, because the p4EBP1 increase is closely related 
to activating events, such as PTEN loss, IGF1R expression, 
or mutation of PIK3CA. In conclusion, these data support 
an important role for the PI3K-Akt pathway in MLPSs 
(Table 1) (19,26).

CCAAT/enhancer binding protein (C/EBP-α)

The C/EBP-α is a transcription factor involved in blood cell 

differentiation. C/EBP-α mutation can reduce CCATT/
enhancer binding protein alpha activity, leading to transition 
of myeloid antecedents. C/EBP-α can interact with CDK4 
and CDK2 (25). In normal adipogenesis, C/EBP-α and its 
partner PPAR-gamma can promote each other’s expression 
and maintain high levels of mRNAs and differentiation (25). 
C/EBP-α and PPAR-γ are reported to be down-regulated 
in DD/WDLPS. It has also been reported that, grown in 
differentiating conditions, the DD cell lines lacked the 
induction of C/EBP-α expression, despite partial induction 
of PPAR-γ (25). Furthermore, PPAR-γ levels increased 
appropriately with the increase of C/EBP-α in the medium 
without PPAR-γ ligand (25). These results suggested that 
restoring or increasing C/EBP-α might be a promising 
therapeutic approach for DDLPS (25).

Calreticulin (CRT)

CRT is also known as calregulin, CaBP3, CRP55, ERp60 
and calsequestrin-like protein, and is encoded by the 
CALR gene. It is expressed in many cancer cells and plays 
an important role in promoting macrophages to engulf 
hazardous cancerous cells (52). Most cells are undamaged 
because of the presence of another molecular signal that 
blocks CD47-CRT. Hence, blocking CD47 with antibodies 
may have a positive effect on the treatment of cancer. Anti-
CD47 did not affect the function of normal cells while 
removing cancer cell in mouse models of non-Hodgkin’s 
lymphoma and myeloid leukemias. 

A recent study showed that several genes located at 
19p13.1-13.2 were highly expressed in DDLPS, including 
genes encoding, CRT, which can inhibit the differentiation 
of adipocytes. The expression of CRT was detected in 45 
patients with LPS, including 15 patients with DDLPS. CRT 
knockdown by siRNA resulted in adipogenesis and reduced 
cell proliferation in DD cells (52). CRT and CD47 might 
thus be effective therapeutic utilities in LPS, especially 
DDLPS (Table 1). 

Minor-groove DNA binders

Trabectedin (Ecteinascidin-743, ET743) is an alkylating 
agent isolated from Ecteinascidia turbinate, which affects 
cancer cells by damaging DNA (53). Gronchi et al. 
reported on a multi-center phase II trial of neoadjuvant 
trabectedin in MLPS patients, initiated by the National 
Cancer Institute (54). Three of 23 patients showed a 
pathological complete responseindicating that a 24-h 
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intravenous infusion of 1.5 mg/m2 trabectedin every  
3 weeks might be a good treatment for MLPS (54).

PNU-166196 (brostallicin) can also bind to the DNA 
minor groove and regulate the transcription of the FUS-
DDIT3 gene (55). A recent phase II study of brostallicin 
in advanced soft tissue sarcomas performed by the 
EORTC suggested that brostallicin resulted in rare tumor  
response (56). More investigations are therefore needed 
to explore the role of DNA minor groove binders in LPS-
targeted therapy.

Other potential targets

TOP2A, PTK7, and CHEK1 were overexpressed in 140 
cases of LPS, including all subtypes and in LPS cell lines (27). 
In LPS cell lines resulted in increased cell proliferation and 
reduced invasiveness (27). Furthermore, point mutations 
in CTNNB1, CDH1, FBXW7and EPHA1 also represent 
potential oncogenic events in LPS cells (51). The C-MET 
amplification rate detected by ISH is 4.8% (3/62) in LPS. 
7.1% (1/14) in myxoid LPS, 28.6% (2/7) in PLPS, and 
zero in other types of LPS (57). EGFR amplification ratio 
is 17.5% (14/80) in LPS. Nearly 3.6% (1/28) in DDLPS, 
41.7% (5/12) in WDLPS, 62.5% (5/8) in PLPS and 
17.6% (3/17) in other/unknown types of LPS) (57). At the 
same time, increased expression of C-KIT, EGFR, PD-
L1, and PD-1+TILs has been validated in these LPS by 
immunohistochemistry, indicating the potential for target 
therapy and immunotherapy (57,58). Further, investigation 
of these genetic aberrations might help in the development 
of more therapeutic methods for LPS patients. 

Conclusions

Genetic aberrations, such as the 12q13-15 amplicon, 
genetic amplification of MDM2, CDK4, TOP2A, PTK7, 
and CHEK1, point mutations in CTNNB1, CDH1, FBXW7, 
and EPHA1, and the fusion of FUS-DDIT3/EWSR1-
DDIT3 contribute to the pathogenesis of LPS and might 
also represent good therapeutic candidates. Tyrosine kinase 
inhibitors targeting MET, AXL, IGFR, EGFR, VEGFR2, 
PDGFR-β and Aurora kinase signaling may also be 
effective in certain types of LPS. Disruption of the PI3K/
Akt signaling pathway and deregulation of C/EBP-α with 
its partner PPAR-γ, also represent promising therapeutic 
methods for LPS trials. Furthermore, targeting interaction 
between calreticulin and CD47 may also lead to useful 
novel cancer treatments. All these potential new targeted 

approaches and promising immunotherapies may provide 
useful supplements to existing treatments for LPS.
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