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Stem cells are key players in development, maintenance and 
regeneration of adult tissues. In the small intestine, stem 
cells reside at the bottom of the crypt, interspersed with 
Paneth cells, where they divide to give rise to progenitor 
or transiently amplifying (TA) cells (1). After few division 
rounds, TA cells differentiate and concomitantly ascend 
along the crypt-villus axis, to eventually complete the 
renewal of the intestinal epithelium in 4–5 days. The 
maintenance of tissue homeostasis relies on a variety of 
factors and signaling pathways operating in the intestinal 
crypt and necessary for the generation of the stem cell 
niche (2). The Wnt signaling is of particular interest as 
it is a well-conserved pathway controlling self-renewal 
and lineage commitment in metazoans. In vertebrates, 19 
different Wnt proteins ligands are involved in the spatio-
temporal activation of multiple signaling pathways (3). In 
particular, activation of the canonical Wnt pathway via 
Frizzled (Fzd) and its co-receptors LRP5/6 tethers to the 
plasma membrane the multiprotein destruction complex, 
consisting of adenomatous polyposis coli (APC), Axin, 

glycogen synthase kinase 3 (GSK-3), casein kinase 1 (CK1), 
protein phosphatase 2A (PP2A) and E3-ubiquitin ligase 
β-TrCP, which results in the cytoplasmic accumulation 
and nuclear translocation of β-catenin. In the nucleus, 
β-catenin regulates the transcription of a subset of genes 
in cooperation with members of the TCF/LEF family of 
transcription factors. While the integrity of this pathway is 
essential for the ISC self-renewal and for the homeostasis of 
intestinal epithelium, its deregulation is often observed in 
diseases such as cancer. Loss-of-function of Wnt negative 
regulators has been extensively investigated. For instance, 
mutations in the APC gene are found in colorectal or gastric 
cancer, truncating or missense mutations in the Axin genes 
are associated with colorectal and hepatocellular cancer, and 
missplicing of GSK3β transcript is prevalent in patients with 
leukemia (4-6). However, gain-of-function mutations, for 
instance in the β-catenin and TCF7L2 genes have also been 
observed in cancer, specifically in hepatocellular carcinoma 
and colorectal cancer (7,8). 
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lately emerged as an important additional regulatory 
layer. Indeed, several reports already highlighted the 
epigenetic inactivation of Wnt pathway negative regulators, 
including DACH1, WIF1, SFRP and DKKs, in various 
human malignancies (9-12). Recently, Chiacchiera and 
colleagues demonstrated that the Polycomb repressive 
complex 1 (PRC1) is required for the integrity of the 
intestinal epithelium by investigating its function in adult 
intestinal stem cells (13). The polycomb group proteins are 
important epigenetic regulators involved in development 
and pluripotency (14). PRC1 complexes display a great 
plasticity in eukaryotes with at least six biochemically 
distinct groups (15). All these complexes operate in 
collaboration with the E3 ubiquitin ligases Ring1a or 
Ring1b, which catalyse the mono-ubiquitination of H2A 
(H2Aubq) on lysine 119 (H2AK119). To characterize the 
function of PRC1 in adult tissue, the authors employed 
a mouse model that couples a constitutive knockout 
(KO) of Ring1a with a conditional KO of Ring1b. While 
Ring1a KO is largely compensated by Ring1b expression, 
inactivation of both genes severely hindered intestinal 
homeostasis as well as H2A ubiquitination. Moreover, 
loss of PRC1 function in Lgr5-ISCs generates a gradual 
deterioration of the crypt architecture (13). This finding 
echoes numerous earlier reports supporting the notion that 
polycomb group proteins maintain stem cell renewal by 
repressing genes that control differentiation (16-21). Next, 
the authors investigated whether Ring1a/Ring1b double 
KO cells could properly differentiate, by monitoring the 
activity of alkaline phosphatase in the villi. Tissue staining 
revealed that double KO cells were unable to complete 
differentiation of specialized intestinal cells as compared 
to wild-type ISCs. Interestingly, this was associated with 
the downregulation of key transcription factors involved in 
this process (e.g., Ascl2, gata4/6 and cdx1/2). However, in 
accordance with the repressive function of PRC1, most of 
the differentially regulated genes in Ring1a/Ring1b double 
KO cells were upregulated. Further analysis of differentially 
expressed genes revealed that distruption of PRC1 in ISCs 
prevents proper intestinal lineage commitment rather 
than promoting a premature cellular differentiation (13). 
The notion that PRC1 serves as a gatekeeper to block 
inadequate lineage commitment was already introduced 
in other systems. For instance, knockdown of 2 different 
components of PRC1 complex (BMI1 and Ring1b) in 
myoblast impedes the formation of fully differentiated 
myotubes (22). Similarly, loss of PRC1 function through 
inactivation of KDM2B and CBX4 blocks the lineage 

commitment of hematopoietic stem cells and epidermal 
basal cells, respectively (23,24). 

The finding that PRC1 has the ability to establish 
different repressive transcriptional programs raises 
questions about the mechanisms used by cells to specifically 
recruit the complexes to the chromatin. Genome-wide 
profiling studies demonstrated that PRC1 and PRC2 
polycomb complexes share a subset of target sites (17,20). 
Characterization of PRC1 and PRC2 recruitment to these 
targets revealed that inactivation of PRC2 (with consequent 
loss of histone 3 lysine 27 trimethylation, H3K27me3), 
determines loss of PRC1 binding to target sites (25). This 
suggests that PRC1 is sequentially recruited to the DNA 
after the binding of PRC2 and the deposition of H3K27 
methylation. However, this classical model does not 
explain the PRC2-independent tethering of PRC1 to other 
genomic loci. Recent reports demonstrated that PRC1 
could be recruited to CpG islands via binding to the lysine 
demethylase 2B or KDM2B (26,27). In this view, contrary 
to the classical model, PRC1 recruitment by KDM2B 
allows the sequential binding of PRC2 and the silencing of 
gene expression. Alternatively, PCR1 can be recruited to the 
DNA through interaction with non-coding RNAs (ncRNAs) 
(28-31). PRC1 was found to interact with ncRNAs via its 
subunit SCML2A (31). Interestingly, interfering with this 
interaction by mutating the RNA binding region of SCML2 
strongly reduced PRC1 recruitment to the chromatin, 
thus supporting the role of ncRNAs as potential chromatin 
anchoring points for protein complexes. 

To further clarify how PRC1 supports ISC self-
renewal, Chiacchiera and colleagues performed a gene 
ontology analysis on upregulated genes identified in Ring1a/
Ring1b double KO cells. The authors found that the only 
significantly enriched functional ontology class was DNA-
binding transcription factors. Interestingly, among these, 
the Zic family of zinc transcription factors was previously 
reported to interfere with the Wnt pathway (32). Using a 
combination of ectopic expression/inactivation of ZICs, 
and immunoprecipitation experiments in colorectal cancer 
cell lines or intestinal-crypt derived organoids, the authors 
showed that ZIC1 and ZIC2 can inhibit the Wnt signaling by 
physically interacting with the β-catenin/TCF complex (13). 
In accordance with this hypothesis, the genomic occupancy 
of TCF7L2 in Ring1a/Ring1b double KO cells is reduced. 
Thus, PRC1 activity is required to repress the expression of 
ZIC TFs, and therefore sustain Wnt signaling in ISCs.

In their report, Chiacchiera and coworkers proved 
the existence of a PRC1-dependent epigenetic control 
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of the Wnt signaling pathway in ISCs. This newly 
discovered regulatory layer operates via the transcriptional 
repression of ZIC TFs, and prevents the formation of the 
transcriptionally inactive ZIC/β-catenin/TCF complex. 
Thus, PRC1 activity maintains the pool of ISCs and 
is essential for normal intestinal tissue homeostasis. 
Interestingly, this epigenetic control could potentially 
contribute to the dysregulation of Wnt/β-catenin signaling 
pathway often observed in human diseases such as cancer 
(33-35). Indeed, loss of PRC1 activity in tumor cells 
derived from ISCs expressing a mutant form of β-catenin 
(CTNNTB1ex3/ex3) fully prevents tumor formation (15). 
These findings highlight the potential of blocking PRC1 
activity as a new therapeutic approach to target cancer 
stem cells, which rely on Wnt signaling for growth and 
survival. While efforts to block PRC1 activity using a 
small inhibitory molecule have already been reported (36), 
another possibility might be the use of peptides able to 
mimic ZIC function and therefore displace β-catenin/TCF 
complex from the chromatin. However, deleterious effects 
on healthy stem cells and tissues homeostasis are certainly 

a potential drawback to consider before therapeutics aimed 
at blocking PRC1 or the Wnt signaling can be developed. 
Alternatively, the emerging involvement of lncRNAs as 
guides or chromatin docking intermediates for protein 
complexes might offer unique opportunities to interfere 
with specific PRC1 complexes and, therefore, minimize 
unwanted effects (Figure 1) (37,38). 
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Figure 1 Schematic representation of new potential approaches 
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Wnt-dependent tumors. 
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